留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时程深度学习的桥面绕流表征与重构方法

战庆亮 白春锦 葛耀君

战庆亮, 白春锦, 葛耀君. 基于时程深度学习的桥面绕流表征与重构方法[J]. kb88凯时集团官网, 2023, 40(9): 13-19. doi: 10.6052/j.issn.1000-4750.2021.12.0005
引用本文: 战庆亮, 白春锦, 葛耀君. 基于时程深度学习的桥面绕流表征与重构方法[J]. kb88凯时集团官网, 2023, 40(9): 13-19. doi: 10.6052/j.issn.1000-4750.2021.12.0005
ZHAN Qing-liang, BAI Chun-jin, GE Yao-jun. REPRESENTATION AND RECONSTRUCTION OF FLOW AROUND BRIDGE DECK USING TIME HISTORY DEEP LEARNING[J]. Engineering Mechanics, 2023, 40(9): 13-19. doi: 10.6052/j.issn.1000-4750.2021.12.0005
Citation: ZHAN Qing-liang, BAI Chun-jin, GE Yao-jun. REPRESENTATION AND RECONSTRUCTION OF FLOW AROUND BRIDGE DECK USING TIME HISTORY DEEP LEARNING[J]. Engineering Mechanics, 2023, 40(9): 13-19. doi: 10.6052/j.issn.1000-4750.2021.12.0005

基于时程深度学习的桥面绕流表征与重构方法

doi: 10.6052/j.issn.1000-4750.2021.12.0005
基金项目: 国家自然科学基金项目(51778495,51978527);桥梁结构抗风技术交通行业重点实验室(上海)开放课题项目(KLWRTBMC21-02);辽宁教育厅研究计划项目(LJKZ0052);中央高校基本科研业务费专项资金资助项目(3132022189)
详细信息
    作者简介:

    战庆亮(1987?),男,辽宁人,讲师,博士,主要从事深度学习与流体力学研究(E-mail: zhanqingliang@163.com)

    白春锦(1996?),男,辽宁人,硕士生,主要从事计算流体力学研究(E-mail: baichunjin_2020@163.com)

    通讯作者:

    葛耀君(1958?),男,上海人,教授,博士,博导,主要从事结构风工程研究(E-mail: yaojunge@tongji.edu.cn)

  • 中图分类号: O357

REPRESENTATION AND RECONSTRUCTION OF FLOW AROUND BRIDGE DECK USING TIME HISTORY DEEP LEARNING

  • 摘要: 流场特性的研究是结构风工程的核心问题,而高分辨率的流场数据对解决风致振动问题、探索流固耦合机理具有着重要意义。受测量方法、计算效率等因素限制,高空间分辨率的流场时程数据的直接获取仍有一定困难。该文基于流场时程数据的表征模型,提出了桥面非定常流动时程重构的深度学习方法。基于一维卷积方法建立了非定常桥面绕流场的表征模型,得到了物理空间与表征模型的编码空间之间的映射关系,最后利用表征模型的解码器生成未知测点处的流场时程数据。对较低雷诺数桥梁主梁的非定常绕流流场进行了研究与验证,实现了桥面绕流的时程数据重构,验证了方法的准确性与可行性。该文所提方法基于流场的时程数据进行表征与重构,可广泛应用于工程中基于一点的传感器数据处理,是一种桥面流场数据分析的新方法。
  • 图  1  主梁截面 /m

    Figure  1.  Cross section of girder

    图  2  计算区域及局部网格

    Figure  2.  Computation domain and mesh setup

    图  3  测点布置图 /m

    Figure  3.  Location of flow monitoring points

    图  4  时程样本

    Figure  4.  Time history sample

    图  5  网络损失值曲线

    Figure  5.  Loss of TAEC model

    图  6  模型的还原时程结果

    Figure  6.  Time history result of model decoder

    图  7  模型的还原相对误差分布

    Figure  7.  Recovery relative error distribution of recovery

    图  8  模型的预测时程结果

    Figure  8.  Time history result of model prediction

    图  9  模型的预测相对误差分布

    Figure  9.  Recovery relative error distribution of prediction

    图  10  压力时程重构的瞬态云图

    Figure  10.  Snapshot of reconstructed pressure time history

    图  11  速度时程重构的瞬态云图

    Figure  11.  Snapshot of reconstructed velocity time history

    表  1  流动时程自动编码特征分类模型参数

    Table  1.   FTH-AE model parameters

    网络层 通道数 激活函数 参数个数
    Input ? ? 0
    Conv 1 64 ReLU 2688
    Conv 2 32 ReLU 84000
    Conv 3 10 ReLU 13130
    Code 10 ReLU 185710
    Dense 18570 ReLU 204270
    Conv_T 1 10 ReLU 4110
    Conv_T 2 32 ReLU 13152
    Conv_T 3 64 ReLU 84032
    Output 1 ReLU 2625
    下载: 导出CSV
  • [1] 葛耀君. 大跨度桥梁抗风的技术挑战与精细化研究[J]. kb88凯时集团官网, 2011(增刊 2): 11 ? 23.

    GE Yaojun. Technical challenges and refinement research on wind resistance of long-span bridges [J]. Engineering Mechanics, 2011(Suppl 2): 11 ? 23. (in Chinese)
    [2] 李永乐, 陈星宇, 汪斌, 等. 扁平箱梁涡激共振阻塞效应及振幅修正[J]. kb88凯时集团官网, 2018, 35(11): 45 ? 52. doi: 10.6052/j.issn.1000-4750.2017.07.0576

    LI Yongle, CHEN Xingyu, WANG Bin, et al. Blockage-Effects and amplitude conversion of vortex- induced vibration for flat-box girder [J]. Engineering Mechanics, 2018, 35(11): 45 ? 52. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0576
    [3] 刘剑寒, 马文勇. 旋转圆柱气动力特性风洞试验研究[J]. kb88凯时集团官网, 2021, 38(增刊): 89 ? 92. doi: 10.6052/j.issn.1000-4750.2020.05.S016

    LIU Jianhan, MA Wenyong. Wind tunnel test on aerodynamic characteristics of a rotating cylinder [J]. Engineering Mechanics, 2021, 38(Suppl): 89 ? 92. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S016
    [4] 刘庆宽, 孙一飞, 张磊杰, 等. 凹痕对斜拉桥斜拉索气动性能影响研究[J]. kb88凯时集团官网, 2019, 36(增刊): 272 ? 277. doi: 10.6052/j.issn.1000-4750.2018.05.S053

    LIU Qingkuan, SUN Yifei, ZHANG Leijie, et al. Study on the influence of dent on aerodynamic performance of stay cables of cable-stayed bridge [J]. Engineering Mechanics, 2019, 36(Suppl): 272 ? 277. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S053
    [5] 金晓威, 赖马树金, 李惠. 物理增强的流场深度学习建模与模拟方法[J]. 力学学报, 2021, 53(10): 2616 ? 2629. doi: 10.6052/0459-1879-21-373

    JIN Xiaowei, LAIMA Shujin, LI Hui. Physics-enhanced deep learning methods for modelling and simulating flow fields [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2616 ? 2629. (in Chinese) doi: 10.6052/0459-1879-21-373
    [6] KUTZ J N. Deep learning in fluid dynamics [J]. Journal of Fluid Mechanics, 2017, 814: 1 ? 4. doi: 10.1017/jfm.2016.803
    [7] MURATA T, FUKAMI K, FUKAGATA K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics [J]. Journal of Fluid Mechanics, 2019, 882: 1 ? 15. doi: 10.1017/jfm.2019.822
    [8] FUKAMI K, NAKAMURA T, FUKAGATA K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data [J]. Physics of Fluids, 2020, 32(9): 095110. doi: 10.1063/5.0020721
    [9] RAISSI M, KARNIADAKIS G E. Hidden physics models: Machine learning of nonlinear partial differential equations [J]. Journal of Computational Physics, 2018, 357: 125 ? 141. doi: 10.1016/j.jcp.2017.11.039
    [10] RAISSI M, WANG Z, TRIANTAFYLLOU M S, et al. Deep learning of vortex-induced vibrations [J]. Journal of Fluid Mechanics, 2019, 861: 119 ? 137. doi: 10.1017/jfm.2018.872
    [11] MAULIK R, SAN O. A neural network approach for the blind deconvolution of turbulent flows [J]. Journal of Fluid Mechanics, 2017, 831: 151 ? 181. doi: 10.1017/jfm.2017.637
    [12] FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning [J]. Journal of Fluid Mechanics, 2019, 870: 106 ? 120. doi: 10.1017/jfm.2019.238
    [13] LIU B, TANG J, HUANG H, et al. Deep learning methods for super-resolution reconstruction of turbulent flows [J]. Physics of Fluids, 2020, 32(2): 025105. doi: 10.1063/1.5140772
    [14] KIM H, KIM J, WON S, et al. Unsupervised deep learning for super-resolution reconstruction of turbulence [J]. Journal of Fluid Mechanics, 2021, 910: 1 ? 14. doi: 10.1017/jfm.2020.1028
    [15] 叶舒然, 张珍, 宋旭东, 等. 自动编码器在流场降阶中的应用[J]. 空气动力学学报, 2019, 37(3): 498 ? 504.

    YE Shuran, ZHANG Zhen, SONG Xudong, et al. Applications of autoencoder in reducedGorder modeling of flow field [J]. Acta Aerodynamica Sinica, 2019, 37(3): 498 ? 504. (in Chinese)
    [16] 惠心雨, 袁泽龙, 白俊强, 等. 基于深度学习的非定常周期性流动预测方法[J]. 空气动力学学报, 2019, 37(3): 462 ? 469.

    HUI Xinyu, YUAN Zelong, BAI Junqiang, et al. A method of unsteady periodic flow field prediction based on the deep learning [J]. Acta Aerodynamica Sinica, 2019, 37(3): 462 ? 469. (in Chinese)
    [17] 战庆亮, 葛耀君, 白春锦. 基于尾流时程目标识别的流场参数选择研究[J]. 力学学报, 2021, 10(53): 2692 ? 2702.

    ZHAN Qingliang, GE Yaojun, BAI Chunjin. Study on flow field parameters of wake time history target recognition [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 10(53): 2692 ? 2702. (in Chinese)
    [18] 战庆亮, 白春锦, 张宁, 等. 基于时程卷积自编码的机翼绕流特征识别方法[J]. 航空学报, 2022, 43(11): 126531. doi: 10.7527/S1000-6893.2021.26531

    ZHAN Qingliang, BAI Chunjin, ZHANG Ning, et al. Feature extraction method of flow around wing based on time history convolutional autoencoder [J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(11): 126531. (in Chinese) doi: 10.7527/S1000-6893.2021.26531
    [19] 战庆亮, 周志勇, 葛耀君. Re=3900圆柱绕流的三维大涡模拟[J]. 哈尔滨工业大学学报, 2015, 47(12): 75 ? 79.

    ZHAN Qingliang, ZHOU Zhiyong, GE Yaojun. 3-Dimensional large eddy simulation of circular cylinder at Re=3900 [J]. Journal of Harbin Institute of Technology, 2015, 47(12): 75 ? 79. (in Chinese)
    [20] 战庆亮, 葛耀君, 白春锦. 流场特征识别的无量纲时程深度学习方法[J]. kb88凯时集团官网, 2023, 40(2): 17 ? 24. doi: 10.6052/j.issn.1000-4750.2021.08.0638

    Zhan Qingliang, Ge Yaojun, Bai Chunjin. Deep learning method for flow field feature recognition based on dimensionless time history [J]. Engineering Mechanics, 2023, 40(2): 17 ? 24. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0638
    [21] 战庆亮, 白春锦, 葛耀君. 基于时程深度学习的流场特征分析方法[J]. 力学学报, 2022, 54(3): 822 ? 828.

    ZHAN Qingliang, BAI Chunjin, GE Yaojun. Fluid feature analysis based on time history deep learning [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 822 ? 828. (in Chinese)
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  58
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-04-14
  • 网络出版日期:  2022-06-25
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回
    sitemap网站地图