IMPROVEMENT AND VERIFICATION OF LEAKAGE RATE ANALYSIS MODEL FOR DAMAGED AND CRACKED PRESSURE-BEARING SHELL
-
摘要: 承压壳体发生放射性、易燃等危险气体泄漏会对环境造成重大威胁,泄漏状况评估是应急措施优化的必要前提。针对严重事故下的厚壳壁微开裂,建立了一套快速定量的泄漏率分析数值模型。基于流量守恒原理,提出了厚壁结构中多段微裂缝构成变截面通道的泄漏率计算改进模型;采用混凝土塑性损伤模型模拟极限载荷下结构的非线性破坏,通过等参函数实现几何不规则单元与规则空间之间的变换,改进了弥散型微裂缝扩展尺度的计算模型。通过数值算例对比文献中的结果,分别验证了以上两个子模型的稳定性和有效性,并由受损剪力墙的泄漏率分析进一步验证了模型的可行性。最后,将模型应用于抗高温内压损伤过程中的某预应力混凝土复杂承压壳体,结果表明:改进的模型适用于厚壁、带孔道等复杂构造承压结构的泄漏率分析,具有一定的实际工程意义。Abstract: The leakage of radioactive, flammable and other dangerous gases from the pressure-bearing shell would pose a major threat to the environment, and the leakage assessment is a necessary prerequisite for the optimization of emergency measures. Aiming at the micro-cracking of the thick shell wall under severe accidents, an efficient and quantitative analysis numerical model for the leakage rate is established. Based on the principle of flow conservation, an improved model is proposed for calculating the leakage rate through a variable cross-section channel formed by multi-segment micro-cracks in a thick-walled structure. The concrete plastic damage model is applied to simulate the nonlinear damage of the structure under its ultimate load, and the model for calculating the scale of smeared micro-cracks is improved by the transformation between the geometric irregular element and the regular space realized through an isoparametric function. Through numerical examples, the research results were compared with those in the literature. The stability and validity of the above two sub-models are verified separately, and the feasibility of the model is further verified by the leakage rate analysis of the damaged shear wall. Finally, the model is applied to a prestressed concrete complex pressure-bearing shell resisting high temperature and internal pressure damage. The results show that the improved model is suitable for the leakage rate analysis of thick-walled, porous and, other complex pressure-bearing structures, which has a certain practical engineering significance.
-
表 1 环境参数表
Table 1. Environment data sheet
条件编号 $ {高压{{P_1} } / {\rm{kPa} } } $ $ { 低压{{P_2} } /{\rm{kPa} } } $ $ {气温T / ({\text{℃} }) } $ A 117.0 102.2 18.1 B 108.0 102.1 17.3 C 104.0 102.2 17.3 D 105.8 102.4 16.9 E 111.8 102.3 18.0 表 2 混凝土的材料参数
Table 2. Mechanical parameters of concrete
初始弹性
模量 $ {{{E_{\rm s}}} / {\rm{GPa} }} $泊松比
$ \nu $抗拉强度
$ {{{f_{\rm tk}}}/ {\rm{MPa} }} $抗压强度
$ {{{f_{\rm ck}}} / {\rm{MPa} }} $极限开裂
应变 $ {\varepsilon _{\rm tu}} $$ {\text{20}}{\text{.7}} $ $ 0.{\text{2}} $ $ {\text{1}}{\text{.83}} $ $ {\text{30}}{\text{.6}} $ $ 8.84 \times {10^{ - 5}} $ 表 3 钢筋的材料参数
Table 3. Mechanical parameters of rebars
钢筋类型 弹性模量
${ {E_{\rm s} } / {\rm {GPa} } }$泊松比
$ \nu $屈服强度
$ {{{f_{\rm y}}} / {\rm{MPa} }} $极限强度
$ {{{f_{\rm u}}} / {\rm{MPa} }} $极限应变
$ {\varepsilon _{\rm u}} $水平 $ 200 $ $ 0.3 $ $ 450 $ $ 670 $ $ 0.145 $ 竖向 $ 592 $ $ 841 $ $ 0.113 $ 拉筋 $ 509 $ $ 671 $ $ 0.120 $ 表 4 气体泄漏率计算数据表
Table 4. Gas leakage rate calculation data sheet
条件编号 文献[10]
Qc1/(×10?5 m3/s)本文Qc2/(×10?5 m3/s) 4层 5层 6层 A 36.1 63.3 34.5 35.0 B 13.5 27.3 14.0 14.2 C 4.1 9.7 4.9 5.0 D 7.7 16.9 8.6 8.8 E 22.5 42.4 22.6 22.9 泄漏率分布图 -
[1] 卢德秀, 孙志军. 107D承压壳体的泄漏及修复[J]. 石油和化工设备, 2003, 6(5): 14 ? 16. doi: 10.3969/j.issn.1674-8980.2003.05.005LU Dexiu, SUN Zhijun. Leakage and repair of 107D pressure-bearing shell [J]. Petro and Chemical Equipment, 2003, 6(5): 14 ? 16. (in Chinese) doi: 10.3969/j.issn.1674-8980.2003.05.005 [2] CHARPIN L, NIEPCERON J, CORBIN M, et al. Ageing and air leakage assessment of a nuclear reactor containment mock-up: VERCORS 2nd benchmark [J]. Nuclear Engineering and Design, 2021, 377: 111136. doi: 10.1016/j.nucengdes.2021.111136 [3] 李建波, 梅润雨, 于梦, 等. 具有隔震构造的核电站安全壳在强烈地震和大型商用飞机撞击下的振动响应分析[J]. kb88凯时集团官网, 2018, 35(9): 81 ? 88. doi: 10.6052/j.issn.1000-4750.2017.05.0335LI Jianbo, MEI Runyu, YU Meng, et al. Vibration response analysis of isolated nuclear containments under severe earthquake and large commercial aircraft impacts [J]. Engineering Mechanics, 2018, 35(9): 81 ? 88. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.0335 [4] 管俊峰, 刘泽鹏, 姚贤华, 等. 确定混凝土开裂与拉伸强度及双K断裂参数[J]. kb88凯时集团官网, 2020, 37(12): 124 ? 137. doi: 10.6052/j.issn.1000-4750.2020.02.0084GUAN Junfeng, LIU Zepeng, YAO Xianhua, et al. Determination of the cracking strength, tensile strength and double K fracture parameters of concrete [J]. Engineering Mechanics, 2020, 37(12): 124 ? 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0084 [5] MISHRA S, THANGAMANI I, SINGH R K. Containment leakage characterization with BARCOM test results for design and over pressure conditions [J]. Nuclear Engineering & Design, 2016, 301(May): 245 ? 254. [6] MORA P, VAUTRIN D, D'URSO G, et al. Air leak detection in a pressurized containment building mock-up using elastic guided waves [J]. NDT & E International, 2022, 125: 102553. [7] JASON L, MASSON B. Comparison between continuous and localized methods to evaluate the flow rate through containment concrete structures [J]. Nuclear Engineering and Design, 2014, 277(Oct.): 146 ? 153. [8] SOPPE T E, HUTCHINSON T C. Assessment of gas leakage rates through damaged reinforced-concrete walls [J]. Journal of Materials in Civil Engineering, 2012, 24(5): 560 ? 567. doi: 10.1061/(ASCE)MT.1943-5533.0000409 [9] RIVA P, BRUSA L, CONTRI P, et al. Prediction of air and steam leak rate through cracked reinforced concrete panels [J]. Nuclear Engineering and Design, 1999, 192(1): 13 ? 30. doi: 10.1016/S0029-5493(99)00080-1 [10] WANG T, HUTCHINSON T C, HAMILTON C H, et al. Gas leakage rate through reinforced concrete shear walls: Numerical study [C]. Vancouver BC, Canada: 13th World Conference on Earthquake Engineering, 2004: Paper No.34. [11] WANG T, HUTCHINSON T C. Gas leakage rate through reinforced concrete shear walls: Numerical study [J]. Nuclear Engineering and Design, 2005, 235(21): 2246 ? 2260. doi: 10.1016/j.nucengdes.2005.04.006 [12] HAMILTON C H, HUTCHINSON T C, PARDOEN G C, et al. Gas and aerosol leakage rate through reinforced concrete shear walls: Experimental study [C]. Vancouver BC, Canada: 13th World Conference on Earthquake Engineering, 2004: Paper No.2484. [13] 刘军, 林皋. 适用于混凝土结构非线性分析的损伤本构模型研究[J]. 土木工程学报, 2012, 45(6): 50 ? 57.LIU Jun, LIN Gao. Study of damage constitutive model applied to simulate nonlinear behavior of concrete structures [J]. China Civil Engineering Journal, 2012, 45(6): 50 ? 57. (in Chinese) [14] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299 ? 329. doi: 10.1016/0020-7683(89)90050-4 [15] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. kb88凯时集团官网, 2013, 30(4): 59 ? 67, 82. doi: 10.6052/j.issn.1000-4750.2011.07.0420NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures [J]. Engineering Mechanics, 2013, 30(4): 59 ? 67, 82. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.07.0420 [16] 傅衣铭, 鲁永红. 损伤对钢筋混凝土板非线性静动力响应的影响[J]. 湖南大学学报(自然科学版), 2005, 6(3): 61 ? 65.FU Yiming, LU Yonghong. Effect of damage upon the nonlinear static and dynamic responses of reinforced concrete plates on elastic foundation [J]. Journal of Hunan University (Natural Sciences), 2005, 6(3): 61 ? 65. (in Chinese) [17] LIANG Y P, FENG D C, REN X. High-fidelity numerical analysis of the damage and failure mechanisms of a prestressed concrete containment vessel under internal pressure [J]. Nuclear Engineering and Design, 2021, 383: 111439. doi: 10.1016/j.nucengdes.2021.111439 [18] RIZKALLA S H, LAU B L, SIMMONDS S H. Air leakage characteristics in reinforced concrete [J]. Journal of Structural Engineering, 1984, 110(5): 1149 ? 1162. doi: 10.1061/(ASCE)0733-9445(1984)110:5(1149) [19] SUZUKI T, TAKIGUCHI K, HOTTA H. Leakage of gas through concrete cracks [J]. Nuclear Engineering and Design, 1992, 133(1): 121 ? 130. doi: 10.1016/0029-5493(92)90096-E [20] GREINER U, RAMM W. Air leakage characteristics in cracked concrete [J]. Nuclear Engineering and Design, 1995, 156(1/2): 167 ? 172. doi: 10.1016/0029-5493(94)00942-R [21] 易平, 王庆康, 刘君. 内压作用下CPR1000安全壳的破坏机理研究[J]. 哈尔滨工程大学学报, 2016, 37(2): 162 ? 167.YI Ping, WANG Qingkang, LIU Jun. Failure mechanism of CPR1000 containment under internal pressure [J]. Journal of Harbin Engineering University, 2016, 37(2): 162 ? 167. (in Chinese) [22] 顾嘉丰, 任青文. 水工混凝土弥散型裂缝数值模型中开裂判据的研究[J]. kb88凯时集团官网, 2015, 32(6): 84 ? 91. doi: 10.6052/j.issn.1000-4750.2013.12.1141GU Jiafeng, REN Qingwen. Study on hydraulic concrete cracking criterion in smeared crack numerical model [J]. Engineering Mechanics, 2015, 32(6): 84 ? 91. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.12.1141 [23] 陶慕轩, 赵继之. 采用通用有限元程序的弥散裂缝模型和分层壳单元模拟钢筋混凝土构件裂缝宽度[J]. kb88凯时集团官网, 2020, 37(4): 165 ? 177. doi: 10.6052/j.issn.1000-4750.2019.07.0342TAO Muxuan, ZHAO Jizhi. Predicting the crack width of reinforced concrete structural members using the smeared crack model and layered shell elements in general-purpose finite element packages [J]. Engineering Mechanics, 2020, 37(4): 165 ? 177. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0342 [24] GB 50010?2010, 混凝土结构设计规范 [S]. 北京: 中国建筑工业出版社, 2010.GB 50010?2010, Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese) [25] 滕楠, 孙景江, 杜轲. 混凝土塑性损伤模型损伤因子计算方法对比研究 [C]// 陆新征. 第26届全国结构工程学术会议论文集(第1册). 北京: kb88凯时集团官网杂志社, 2017: 494 ? 499.TENG Nan, SUN Jingjiang, DU Ke. Comparative study on damage factor calculation methods of concrete plastic damage model [C]// Lu Xinzheng. Proceedings of the 26th National Conference on Structural Engineering (Volume 1). Beijing: Journal of Engineering Mechanics, 2017: 494 ? 499. (in Chinese) [26] NAJAR J. Continuous damage of brittle solids [M]. Vienna: Springer-Verlag, 1987: 233 ? 294. [27] 王勖成. 有限单元法 [M]. 北京: 清华大学出版社, 2003: 130 ? 160.WANG Xucheng. Finite Element Method [M]. Beijing: Tsinghua University Press, 2003: 130 ? 160. (in Chinese) [28] EVANS R H, MARATHE M S. Microcracking and stress-strain curves for concrete in tension [J]. Materials and Structures, 1968(1): 61 ? 64. [29] French Association for Design. Rules for design and construction of pwr nuclear civil works: RCC-CW [S]. Paris: French Association for Design, 2015: 7 ? 8. [30] 金松, 李忠诚, 蓝天云, 等. 严重事故下预应力混凝土安全壳非线性分析及性能评估[J]. 核动力工程, 2020, 41(4): 96 ? 100.JIN Song, LI Zhongcheng, LAN Tianyun, et al. Nonlinear analysis and performance evaluation of prestressed concrete containment structure under severe accident condition [J]. Nuclear Power Engineering, 2020, 41(4): 96 ? 100. (in Chinese) [31] 金松, 李鑫波, 贡金鑫. 严重事故下核电厂安全壳结构概率性能评价[J]. kb88凯时集团官网, 2021, 38(6): 103 ? 112. doi: 10.6052/j.issn.1000-4750.2020.07.0437JIN Song, LI Xinbo, GONG Jinxin. Probabilistic performance evaluation of nuclear containment structure subjected to severe accidents [J]. Engineering Mechanics, 2021, 38(6): 103 ? 112. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0437 -