留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

损伤开裂承压壳体泄漏率分析模型改进与验证

李建波 胡哲文 林皋 丁志新

李建波, 胡哲文, 林皋, 丁志新. 损伤开裂承压壳体泄漏率分析模型改进与验证[J]. kb88凯时集团官网, 2023, 40(9): 214-223. doi: 10.6052/j.issn.1000-4750.2021.12.0010
引用本文: 李建波, 胡哲文, 林皋, 丁志新. 损伤开裂承压壳体泄漏率分析模型改进与验证[J]. kb88凯时集团官网, 2023, 40(9): 214-223. doi: 10.6052/j.issn.1000-4750.2021.12.0010
LI Jian-bo, HU Zhe-wen, LIN Gao, DING Zhi-xin. IMPROVEMENT AND VERIFICATION OF LEAKAGE RATE ANALYSIS MODEL FOR DAMAGED AND CRACKED PRESSURE-BEARING SHELL[J]. Engineering Mechanics, 2023, 40(9): 214-223. doi: 10.6052/j.issn.1000-4750.2021.12.0010
Citation: LI Jian-bo, HU Zhe-wen, LIN Gao, DING Zhi-xin. IMPROVEMENT AND VERIFICATION OF LEAKAGE RATE ANALYSIS MODEL FOR DAMAGED AND CRACKED PRESSURE-BEARING SHELL[J]. Engineering Mechanics, 2023, 40(9): 214-223. doi: 10.6052/j.issn.1000-4750.2021.12.0010

损伤开裂承压壳体泄漏率分析模型改进与验证

doi: 10.6052/j.issn.1000-4750.2021.12.0010
基金项目: 国家自然科学基金项目(52178460);国家自然科学基金项目(51779222)
详细信息
    作者简介:

    胡哲文(1997?),男,浙江人,博士生,从事极限载荷下核电结构安全评价模型研究 (E-mail: zwhu@mail.dlut.edu.cn)

    林 皋(1929?),男,江西人,教授,博士,中国科学院院士,从事水利工程与核电工程抗震研究 (E-mail: gaolin@dlut.edu.cn)

    丁志新(1979?),男,湖南人,高工,学士,从事核电厂核岛结构设计与评估 (E-mail: dingzhixing@cgnpc.com.cn)

    通讯作者:

    李建波(1977?),男,河北人,副教授,博士,从事核电与水工结构抗震安全评价模型与方法研究 (E-mail: jianboli@dlut.edu.cn)

  • 中图分类号: TL371;TU375

IMPROVEMENT AND VERIFICATION OF LEAKAGE RATE ANALYSIS MODEL FOR DAMAGED AND CRACKED PRESSURE-BEARING SHELL

  • 摘要: 承压壳体发生放射性、易燃等危险气体泄漏会对环境造成重大威胁,泄漏状况评估是应急措施优化的必要前提。针对严重事故下的厚壳壁微开裂,建立了一套快速定量的泄漏率分析数值模型。基于流量守恒原理,提出了厚壁结构中多段微裂缝构成变截面通道的泄漏率计算改进模型;采用混凝土塑性损伤模型模拟极限载荷下结构的非线性破坏,通过等参函数实现几何不规则单元与规则空间之间的变换,改进了弥散型微裂缝扩展尺度的计算模型。通过数值算例对比文献中的结果,分别验证了以上两个子模型的稳定性和有效性,并由受损剪力墙的泄漏率分析进一步验证了模型的可行性。最后,将模型应用于抗高温内压损伤过程中的某预应力混凝土复杂承压壳体,结果表明:改进的模型适用于厚壁、带孔道等复杂构造承压结构的泄漏率分析,具有一定的实际工程意义。
  • 图  1  气体泄漏基本模型

    Figure  1.  Basic model of the gas leakage

    图  2  开裂通道气体泄漏模型

    Figure  2.  Model of the gas leakage through cracked channel

    图  3  损伤理论示意图

    Figure  3.  Diagram of the damage theory

    图  4  混凝土本构关系

    Figure  4.  Constitutive relation of the concrete

    图  5  规则六面体单元的开裂模型

    Figure  5.  Cracking model of the regular hexahedral element

    图  6  等参变换过程示意图

    Figure  6.  Diagram of isoparametric transformation process

    图  7  损伤开裂承压壳体泄漏率分析流程图

    Figure  7.  Analysis flow chart of leakage rate for damaged cracked pressure-bearing shell

    图  8  泄漏率下降系数曲线

    Figure  8.  Leakage rate reduction coefficient curve

    图  9  混凝土的应力-应变全曲线

    Figure  9.  Stress-strain curve of the concrete

    图  10  主拉应变-裂缝开度曲线

    Figure  10.  Principal tensile strain-crack width curve

    图  11  剪力墙的有限元模型

    Figure  11.  Finite element model of the shear wall

    图  12  6层模型中心区域混凝土的损伤状态

    Figure  12.  Damage status of the concrete in the central area of the 6-layers model

    图  13  6层模型中心区域钢筋的受力状态

    Figure  13.  Stress state of the rebars in the central area of the 6-layers model

    图  14  气体泄漏率-加载曲线

    Figure  14.  Gas leakage rate-loading process curve

    图  15  壳体的尺寸示意图 /m

    Figure  15.  Dimension diagram of the shell

    图  16  壳体的有限元模型

    Figure  16.  Finite element model of the shell

    图  17  升温内压时程曲线

    Figure  17.  Pressure and temperature time history curve

    图  18  承压壳体壁温度分布

    Figure  18.  Temperature distribution on pressure-bearing shell wall

    图  19  承压壳体壁塑性应变分布

    Figure  19.  Plastic strain distribution on pressure-bearing shell wall

    图  20  气体泄漏率时程曲线

    Figure  20.  Gas leakage rate time history curve

    表  1  环境参数表

    Table  1.   Environment data sheet

    条件编号 $ {高压{{P_1} } / {\rm{kPa} } } $ $ { 低压{{P_2} } /{\rm{kPa} } } $ $ {气温T / ({\text{℃} }) } $
    A 117.0 102.2 18.1
    B 108.0 102.1 17.3
    C 104.0 102.2 17.3
    D 105.8 102.4 16.9
    E 111.8 102.3 18.0
    下载: 导出CSV

    表  2  混凝土的材料参数

    Table  2.   Mechanical parameters of concrete

    初始弹性
    模量 $ {{{E_{\rm s}}} / {\rm{GPa} }} $
    泊松比
    $ \nu $
    抗拉强度
    $ {{{f_{\rm tk}}}/ {\rm{MPa} }} $
    抗压强度
    $ {{{f_{\rm ck}}} / {\rm{MPa} }} $
    极限开裂
    应变 $ {\varepsilon _{\rm tu}} $
    $ {\text{20}}{\text{.7}} $ $ 0.{\text{2}} $ $ {\text{1}}{\text{.83}} $ $ {\text{30}}{\text{.6}} $ $ 8.84 \times {10^{ - 5}} $
    下载: 导出CSV

    表  3  钢筋的材料参数

    Table  3.   Mechanical parameters of rebars

    钢筋类型 弹性模量
    ${ {E_{\rm s} } / {\rm {GPa} } }$
    泊松比
    $ \nu $
    屈服强度
    $ {{{f_{\rm y}}} / {\rm{MPa} }} $
    极限强度
    $ {{{f_{\rm u}}} / {\rm{MPa} }} $
    极限应变
    $ {\varepsilon _{\rm u}} $
    水平 $ 200 $ $ 0.3 $ $ 450 $ $ 670 $ $ 0.145 $
    竖向 $ 592 $ $ 841 $ $ 0.113 $
    拉筋 $ 509 $ $ 671 $ $ 0.120 $
    下载: 导出CSV

    表  4  气体泄漏率计算数据表

    Table  4.   Gas leakage rate calculation data sheet

    条件编号 文献[10]
    Qc1/(×10?5 m3/s)
    本文Qc2/(×10?5 m3/s)
    4层 5层 6层
    A 36.1 63.3 34.5 35.0
    B 13.5 27.3 14.0 14.2
    C 4.1 9.7 4.9 5.0
    D 7.7 16.9 8.6 8.8
    E 22.5 42.4 22.6 22.9
    泄漏率分布图
    下载: 导出CSV
  • [1] 卢德秀, 孙志军. 107D承压壳体的泄漏及修复[J]. 石油和化工设备, 2003, 6(5): 14 ? 16. doi: 10.3969/j.issn.1674-8980.2003.05.005

    LU Dexiu, SUN Zhijun. Leakage and repair of 107D pressure-bearing shell [J]. Petro and Chemical Equipment, 2003, 6(5): 14 ? 16. (in Chinese) doi: 10.3969/j.issn.1674-8980.2003.05.005
    [2] CHARPIN L, NIEPCERON J, CORBIN M, et al. Ageing and air leakage assessment of a nuclear reactor containment mock-up: VERCORS 2nd benchmark [J]. Nuclear Engineering and Design, 2021, 377: 111136. doi: 10.1016/j.nucengdes.2021.111136
    [3] 李建波, 梅润雨, 于梦, 等. 具有隔震构造的核电站安全壳在强烈地震和大型商用飞机撞击下的振动响应分析[J]. kb88凯时集团官网, 2018, 35(9): 81 ? 88. doi: 10.6052/j.issn.1000-4750.2017.05.0335

    LI Jianbo, MEI Runyu, YU Meng, et al. Vibration response analysis of isolated nuclear containments under severe earthquake and large commercial aircraft impacts [J]. Engineering Mechanics, 2018, 35(9): 81 ? 88. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.0335
    [4] 管俊峰, 刘泽鹏, 姚贤华, 等. 确定混凝土开裂与拉伸强度及双K断裂参数[J]. kb88凯时集团官网, 2020, 37(12): 124 ? 137. doi: 10.6052/j.issn.1000-4750.2020.02.0084

    GUAN Junfeng, LIU Zepeng, YAO Xianhua, et al. Determination of the cracking strength, tensile strength and double K fracture parameters of concrete [J]. Engineering Mechanics, 2020, 37(12): 124 ? 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0084
    [5] MISHRA S, THANGAMANI I, SINGH R K. Containment leakage characterization with BARCOM test results for design and over pressure conditions [J]. Nuclear Engineering & Design, 2016, 301(May): 245 ? 254.
    [6] MORA P, VAUTRIN D, D'URSO G, et al. Air leak detection in a pressurized containment building mock-up using elastic guided waves [J]. NDT & E International, 2022, 125: 102553.
    [7] JASON L, MASSON B. Comparison between continuous and localized methods to evaluate the flow rate through containment concrete structures [J]. Nuclear Engineering and Design, 2014, 277(Oct.): 146 ? 153.
    [8] SOPPE T E, HUTCHINSON T C. Assessment of gas leakage rates through damaged reinforced-concrete walls [J]. Journal of Materials in Civil Engineering, 2012, 24(5): 560 ? 567. doi: 10.1061/(ASCE)MT.1943-5533.0000409
    [9] RIVA P, BRUSA L, CONTRI P, et al. Prediction of air and steam leak rate through cracked reinforced concrete panels [J]. Nuclear Engineering and Design, 1999, 192(1): 13 ? 30. doi: 10.1016/S0029-5493(99)00080-1
    [10] WANG T, HUTCHINSON T C, HAMILTON C H, et al. Gas leakage rate through reinforced concrete shear walls: Numerical study [C]. Vancouver BC, Canada: 13th World Conference on Earthquake Engineering, 2004: Paper No.34.
    [11] WANG T, HUTCHINSON T C. Gas leakage rate through reinforced concrete shear walls: Numerical study [J]. Nuclear Engineering and Design, 2005, 235(21): 2246 ? 2260. doi: 10.1016/j.nucengdes.2005.04.006
    [12] HAMILTON C H, HUTCHINSON T C, PARDOEN G C, et al. Gas and aerosol leakage rate through reinforced concrete shear walls: Experimental study [C]. Vancouver BC, Canada: 13th World Conference on Earthquake Engineering, 2004: Paper No.2484.
    [13] 刘军, 林皋. 适用于混凝土结构非线性分析的损伤本构模型研究[J]. 土木工程学报, 2012, 45(6): 50 ? 57.

    LIU Jun, LIN Gao. Study of damage constitutive model applied to simulate nonlinear behavior of concrete structures [J]. China Civil Engineering Journal, 2012, 45(6): 50 ? 57. (in Chinese)
    [14] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299 ? 329. doi: 10.1016/0020-7683(89)90050-4
    [15] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. kb88凯时集团官网, 2013, 30(4): 59 ? 67, 82. doi: 10.6052/j.issn.1000-4750.2011.07.0420

    NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures [J]. Engineering Mechanics, 2013, 30(4): 59 ? 67, 82. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.07.0420
    [16] 傅衣铭, 鲁永红. 损伤对钢筋混凝土板非线性静动力响应的影响[J]. 湖南大学学报(自然科学版), 2005, 6(3): 61 ? 65.

    FU Yiming, LU Yonghong. Effect of damage upon the nonlinear static and dynamic responses of reinforced concrete plates on elastic foundation [J]. Journal of Hunan University (Natural Sciences), 2005, 6(3): 61 ? 65. (in Chinese)
    [17] LIANG Y P, FENG D C, REN X. High-fidelity numerical analysis of the damage and failure mechanisms of a prestressed concrete containment vessel under internal pressure [J]. Nuclear Engineering and Design, 2021, 383: 111439. doi: 10.1016/j.nucengdes.2021.111439
    [18] RIZKALLA S H, LAU B L, SIMMONDS S H. Air leakage characteristics in reinforced concrete [J]. Journal of Structural Engineering, 1984, 110(5): 1149 ? 1162. doi: 10.1061/(ASCE)0733-9445(1984)110:5(1149)
    [19] SUZUKI T, TAKIGUCHI K, HOTTA H. Leakage of gas through concrete cracks [J]. Nuclear Engineering and Design, 1992, 133(1): 121 ? 130. doi: 10.1016/0029-5493(92)90096-E
    [20] GREINER U, RAMM W. Air leakage characteristics in cracked concrete [J]. Nuclear Engineering and Design, 1995, 156(1/2): 167 ? 172. doi: 10.1016/0029-5493(94)00942-R
    [21] 易平, 王庆康, 刘君. 内压作用下CPR1000安全壳的破坏机理研究[J]. 哈尔滨工程大学学报, 2016, 37(2): 162 ? 167.

    YI Ping, WANG Qingkang, LIU Jun. Failure mechanism of CPR1000 containment under internal pressure [J]. Journal of Harbin Engineering University, 2016, 37(2): 162 ? 167. (in Chinese)
    [22] 顾嘉丰, 任青文. 水工混凝土弥散型裂缝数值模型中开裂判据的研究[J]. kb88凯时集团官网, 2015, 32(6): 84 ? 91. doi: 10.6052/j.issn.1000-4750.2013.12.1141

    GU Jiafeng, REN Qingwen. Study on hydraulic concrete cracking criterion in smeared crack numerical model [J]. Engineering Mechanics, 2015, 32(6): 84 ? 91. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.12.1141
    [23] 陶慕轩, 赵继之. 采用通用有限元程序的弥散裂缝模型和分层壳单元模拟钢筋混凝土构件裂缝宽度[J]. kb88凯时集团官网, 2020, 37(4): 165 ? 177. doi: 10.6052/j.issn.1000-4750.2019.07.0342

    TAO Muxuan, ZHAO Jizhi. Predicting the crack width of reinforced concrete structural members using the smeared crack model and layered shell elements in general-purpose finite element packages [J]. Engineering Mechanics, 2020, 37(4): 165 ? 177. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0342
    [24] GB 50010?2010, 混凝土结构设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010?2010, Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)
    [25] 滕楠, 孙景江, 杜轲. 混凝土塑性损伤模型损伤因子计算方法对比研究 [C]// 陆新征. 第26届全国结构工程学术会议论文集(第1册). 北京: kb88凯时集团官网杂志社, 2017: 494 ? 499.

    TENG Nan, SUN Jingjiang, DU Ke. Comparative study on damage factor calculation methods of concrete plastic damage model [C]// Lu Xinzheng. Proceedings of the 26th National Conference on Structural Engineering (Volume 1). Beijing: Journal of Engineering Mechanics, 2017: 494 ? 499. (in Chinese)
    [26] NAJAR J. Continuous damage of brittle solids [M]. Vienna: Springer-Verlag, 1987: 233 ? 294.
    [27] 王勖成. 有限单元法 [M]. 北京: 清华大学出版社, 2003: 130 ? 160.

    WANG Xucheng. Finite Element Method [M]. Beijing: Tsinghua University Press, 2003: 130 ? 160. (in Chinese)
    [28] EVANS R H, MARATHE M S. Microcracking and stress-strain curves for concrete in tension [J]. Materials and Structures, 1968(1): 61 ? 64.
    [29] French Association for Design. Rules for design and construction of pwr nuclear civil works: RCC-CW [S]. Paris: French Association for Design, 2015: 7 ? 8.
    [30] 金松, 李忠诚, 蓝天云, 等. 严重事故下预应力混凝土安全壳非线性分析及性能评估[J]. 核动力工程, 2020, 41(4): 96 ? 100.

    JIN Song, LI Zhongcheng, LAN Tianyun, et al. Nonlinear analysis and performance evaluation of prestressed concrete containment structure under severe accident condition [J]. Nuclear Power Engineering, 2020, 41(4): 96 ? 100. (in Chinese)
    [31] 金松, 李鑫波, 贡金鑫. 严重事故下核电厂安全壳结构概率性能评价[J]. kb88凯时集团官网, 2021, 38(6): 103 ? 112. doi: 10.6052/j.issn.1000-4750.2020.07.0437

    JIN Song, LI Xinbo, GONG Jinxin. Probabilistic performance evaluation of nuclear containment structure subjected to severe accidents [J]. Engineering Mechanics, 2021, 38(6): 103 ? 112. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0437
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  64
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-04-13
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-05-27
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回
    sitemap网站地图