FAILURE PRIDICTION OF GLASS FIBER-REINFORCED FLEXIBLE PIPES UNDER INTERNAL PRESSURE
-
摘要: 为深入探讨内压工况下玻纤增强柔性管的损伤失效机理,该文采用三维弹性力学理论,对柔性管三维本构关系开展理论分析,通过结合三维Hashin-Yeh失效准则与非线性刚度退化模型,建立了考虑基体材料非线性力学行为的柔性管三维渐进失效模型。采用静水压爆破实验对理论模型进行验证,在此基础上进行缠绕角度及径厚比等参数敏感性分析。理论模型与实验结果对比较为吻合;缠绕角度对柔性管在内压工况下的应力分布有较为明显的影响,随着缠绕角度的增加柔性管的首层失效荷载与最终爆破荷载均呈现增长趋势;随着径厚比的增加,柔性管承压能力迅速降低,但失效模式并未发生改变。Abstract: In order to explore the damage failure mechanism of glass fiber-reinforced flexible pipes under internal pressure, the theory of three-dimensional (3D) elasticity is adopted to carry out the theoretical analysis on 3D constitutive relationship of a flexible tube. Combined with a 3D Hashin-Yeh failure criterion and a nonlinear stiffness degradation model, considering the nonlinear mechanical behavior of matrix materials, a 3D progressive failure model of the flexible tube is established. The hydrostatic burst experiments are used to verify the theoretical model. And on this basis, the influence of winding angle and diameter thickness ratio on the failure load and failure mode of the flexible tube is analyzed. The analysis results show that: the theoretical model is in a good agreement with the experimental results. The winding angle has an obvious effect on the stress distribution of the flexible pipe under internal pressure; with the increase of the winding angle, the first layer failure load and the final burst failure load of the flexible pipe all present a tendency of increasing; with the increase of diameter thickness ratio, the pressure capacity of the flexible pipe decreases rapidly, but the failure mode does not change.
-
图 4 失效后的样管[24]
Figure 4. Sample pipe after failure
图 5 不同缠绕层数的载荷时程曲线[24]
Figure 5. Load time history curve of different winding layers
失效类型 失效方式 E1 E2 E3 ν12 ν13 ν23 G12 G13 G23 基体失效 拉伸 1.00 0.3 1.0 1 1 1 0.3 1.0 0.3 压缩 1.00 0.4 1.0 1 1 1 0.4 1.0 0.4 纤维失效 拉伸 0.07 1.0 1.0 1 1 1 1.0 1.0 1.0 压缩 0.14 1.0 1.0 1 1 1 1.0 1.0 1.0 分层失效 拉伸 1.00 0.3 0.3 1 1 1 1.0 0.3 0.3 压缩 1.00 0.4 0.4 1 1 1 1.0 0.4 0.4 表 2 柔性管几何参数(4层)
Table 2. Calculation parameters of flexible pipes(4-layer)
内径/
mm内衬层
壁厚/mm增强层
壁厚/mm缠绕
角度/(°)外保护层
壁厚/mm48 4 0.25×4 ±55 2 表 3 柔性管材料参数
Table 3. Material parameters of flexible pipes
材料名称 材料参数 数值 玻纤带 纵向拉伸模量E1/MPa 28 000.00 横向拉伸模量E2/MPa 3200.00 厚度向拉伸模量E3/MPa 3200.00 泊松比ν12 0.30 泊松比ν13 0.30 泊松比ν23 0.30 剪切模量G12/MPa 2700.00 剪切模量G13/MPa 2700.00 剪切模量G23/MPa 1230.00 HDPE 弹性模量E/MPa 900.00 泊松比ν 0.38 表 4 不同缠绕角度下柔性管失效压力(12层)
Table 4. The failure pressures of flexible pipes under different winding angles
缠绕角/(°) 失效模式 纤维拉伸/MPa 基体拉伸/MPa 纤维/基体剪切/MPa 最内层 最外层 最内层 最外层 最内层 最外层 15/?15 10.5 11.02 6.01 6.5 10.3 10.9 25/?25 31.0 34.92 6.11 6.5 8.4 8.9 35/?35 35.7 49.32 6.61 7.2 7.4 8.1 45/?45 28.3 52.82 9.3 10.3 8.81 9.7 55/?55 54.6 60.72 21.2 59.7 13.11 14.9 65/-65 82.7 86.22 19.3 20.3 16.11 17.9 75/?75 85.7 91.72 15.8 14.91 16.7 18.6 85/?85 88.8 99.12 14.2 13.41 18.0 20.4 注:上标1代表首层失效压力;上标2代表最终爆破失效压力。 表 5 不同径厚比条件下柔性管失效压力(12层)
Table 5. The failure pressures of flexible pipes under different D/t
径厚比 失效模式 分层/MPa 纤维拉伸/MPa 基体拉伸/MPa 纤维/基体剪切/MPa 最内层 最外层 最内层 最外层 最内层 最外层 5 81.1 98.22 23.8 97.2 22.11 26.2 63.5 6 68.2 78.12 22.9 76.7 16.81 19.6 59.9 8 49.7 54.82 20.4 54.2 12.01 13.5 ? 10 39.3 42.32 18.2 41.9 9.31 10.2 ? 15 25.8 26.82 14.3 26.6 6.11 6.4 ? 20 19.2 19.92 10.1 10.2 4.51 4.7 ? 25 15.3 15.82 7.1 7.3 3.61 3.7 ? 30 12.7 13.02 5.5 5.8 2.91 3.1 ? 注:上标1代表首层失效压力;上标2代表最终爆破失效压力。 -
[1] 张宁宁, 王青, 王建君, 等. 近20年世界油气新发现特征与勘探趋势展望[J]. 中国石油勘探, 2018, 23(1): 44 ? 53.ZHANG Ningning, WANG Qing, WANG Jianjun, et al. Characteristics of oil and gas discoveries in recent 20 years and future exploration in the world [J]. China Petroleum Exploration, 2018, 23(1): 44 ? 53. (in Chinese) [2] 陈志伟. 超深水多用途柔性立管动力响应及疲劳分析[D]. 青岛: 中国石油大学(华东), 2018.CHEN Zhiwei. Dynamic response and fatigue analysis of ultra-deep water multi-purpose flexible riser. Qingdao: China University of Petroleum (East China), 2018. (in Chinese) [3] 罗贞礼. 柔性复合管在油气田中的开发应用探讨[J]. 新材料产业, 2011(6): 55 ? 57.LUO Zhenli. The discussion of development and application of flexible composite pipe in oil and gas fields [J]. Advanced Materials Industry, 2011(6): 55 ? 57. (in Chinese) [4] KUANG Yu, MOROZOV E V, ASHRAF M A, et al. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications [J]. Journal of Reinforced Plastics and Composites, 2017, 36(20): 1 ? 17. [5] CHOUCHAOUI C S, OCHOA O O. Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure. Part I: Governing equations [J]. Composite Structures, 1994, 44(4): 221 ? 229. [6] CHOUCHAOUI C S, OCHOA O O. Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure. Part II: Scale models [J]. Composite Structures, 1994, 44(4): 231 ? 236. [7] XIA M, TAKAYANAGI H, KEMMOCHI K. Analysis of multi-layered filament-wound composite pipes under internal pressure [J]. Composite Structures, 2001, 53(4): 483 ? 491. doi: 10.1016/S0263-8223(01)00061-7 [8] XIA M, KEMMOCHI K, TAKAYANAGI H. Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading [J]. Composite Structures, 2001, 51(3): 273 ? 283. doi: 10.1016/S0263-8223(00)00137-9 [9] XIA M, TAKAYANAGI H, KEMMOCHI K. Analysis of transverse loading for laminated cylindrical pipes [J]. Composite Structures, 2001, 53(3): 279 ? 285. doi: 10.1016/S0263-8223(01)00011-3 [10] XIA M, TAKAYANAGI H, KEMMOCHI K. Bending behavior of filament-wound fiber-reinforced sandwich pipes [J]. Composite Structures, 2002, 56(2): 201 ? 210. doi: 10.1016/S0263-8223(01)00181-7 [11] KRUIJER M, WARNET L, AKKERMAN R. Analysis of the mechanical properties of a reinforced thermoplastic pipe (RTP) [J]. Composites Part A:Applied Science and Manufacturing, 2005, 36(2): 291 ? 300. doi: 10.1016/S1359-835X(04)00168-X [12] KOBAYASHI S, IMAI T, WAKAYAMA S. Burst strength evaluation of the FW-CFRP hybrid composite pipes considering plastic deformation of the liner [J]. Composites Part A Applied Science & Manufacturing, 2007, 38(5): 1344 ? 1353. [13] BAI Y, XU F, CHENG P. Investigation on the mechanical properties of the Reinforced Thermoplastic Pipe (RTP) under internal pressure [C]// The Proceedings of the Twenty-Second International Offshore and Polar Engineering Conference. Rhodes GR: Published Online, 2012: 109 ? 116. [14] BAI Y, WANG Y, CHENG P. Analysis of Reinforced Thermoplastic Pipe (RTP) under Axial Loads [C]// International Conference on Pipelines and Trenchless Technology. Wuhan China: Published Online, 2012: 708 ? 724. [15] BAI Y, XU W P, CHENG P, et al. Behaviour of reinforced thermoplastic pipe (RTP) under combined external pressure and tension [J]. Ships and Offshore Structures, 2014, 9(4): 464 ? 474. doi: 10.1080/17445302.2013.835147 [16] BAI Y, RUAN W D, CHENG P, et al. Buckling of reinforced thermoplastic pipe (RTP) under combined bending and tension [J]. Ships and Offshore Structures, 2014, 9(5): 525 ? 539. doi: 10.1080/17445302.2014.887171 [17] BAI Y, TANG J, XU W, et al. Collapse of reinforced thermoplastic pipe (RTP) under combined external pressure and bending moment [J]. Ocean Engineering, 2015, 94: 10 ? 18. doi: 10.1016/j.oceaneng.2014.10.002 [18] RAFIEE R, AMINI A. Modelling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes [J]. Computational Materials Science, 2015, 96: 579 ? 588. doi: 10.1016/j.commatsci.2014.03.036 [19] RAFIEE R. On the mechanical performance of glass-fiber-reinforced thermosetting-resin pipes: A review [J]. Composite Structures, 2016, 143: 151 ? 164. doi: 10.1016/j.compstruct.2016.02.037 [20] GAO L, LIU T, SHAO Q, et al. Burst pressure of steel reinforced flexible pipe [J]. Marine Structures, 2020, 71: 102704. doi: 10.1016/j.marstruc.2019.102704 [21] ZHU X H, LEI Q L, MENG Y, et al. Analysis of tensile response of flexible pipe with ovalization under hydrostatic pressure [J]. Applied Ocean Research, 2021, 108: 1 ? 10. [22] LI X T, VAZ M A, CUST?DIO A B. High strength tape layer modeling for analysis of flexible pipe axisymmetric behavior and birdcaging limit [J]. Ocean Engineering, 2021, 234: 109273. doi: 10.1016/j.oceaneng.2021.109273 [23] LOU M, WANG Y Y, TONG B, et al. Effect of temperature on tensile properties of reinforced thermoplastic pipes [J]. Composite Structures, 2020, 241: 1 ? 12. [24] WANG Y Y, LOU M, DONG W Y, et al. Predicting failure pressure of reinforced thermoplastic pipes based on theoretical analysis and experiment [J]. Composite Structures, 2021, 270(4): 1 ? 16. [25] 邢静忠, 陈利, 孙颖. 纤维缠绕厚壁柱形压力容器的应力和变形[J]. 固体火箭技术, 2009, 32(6): 680 ? 685. doi: 10.3969/j.issn.1006-2793.2009.06.020XING Jingzhong, CHEN Li, SUN Ying. Stress and deformation of filament winding thick-wall cylinder pressure vessels [J]. Journal of Solid Rocket Technology, 2009, 32(6): 680 ? 685. (in Chinese) doi: 10.3969/j.issn.1006-2793.2009.06.020 [26] XING J Z, GENG P, YANG T. Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure [J]. Composite Structures, 2015, 131: 868 ? 877. doi: 10.1016/j.compstruct.2015.05.036 [27] 董建鹏, 王时龙, 周杰, 等. 基于修正GTN模型的不锈钢管剪切过程韧性断裂准则研究[J]. kb88凯时集团官网, 2021, 38(3): 239 ? 247. doi: 10.6052/j.issn.1000-4750.2020.05.0303DONG Jianpeng, WANG Shilong, ZHOU Jie, et al. The ductile fracture criterion of stainless-steel tubes in the shearing process based on modified GTN model [J]. Engineering Mechanics, 2021, 38(3): 239 ? 247. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0303 [28] 王鹏, 钟轶峰, 罗丹, 等. FRP层合板自由边效应的 变分渐近降维模型[J]. kb88凯时集团官网, 2020, 37(增刊): 157 ? 163. doi: 10.6052/j.issn.1000-4750.2019.04.S027WANG Peng, ZHONG Yifeng, LUO Dan, et al. A variational asymptotic dimensional-reduced model for free-edge effect of FRP laminates [J]. Engineering Mechanics, 2020, 37(Suppl): 157 ? 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S027 [29] 王东锋, 邵永波, 欧佳灵. CFRP加固含腐蚀缺陷圆钢管混凝土短柱轴压承载力试验研究[J]. kb88凯时集团官网, 2021, 38(10): 188 ? 199. doi: 10.6052/j.issn.1000-4750.2020.10.0732WANG Dongfeng, SHAO Yongbo, OU Jialing. Experimental study on axial compressive capacity of corroded concrete filled circular CFRP-steel tube stubs [J]. Engineering Mechanics, 2021, 38(10): 188 ? 199. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0732 [30] 孟祥剑, 王树青, 姚潞. 玻纤增强柔性管等效简化模型研究[J]. 海洋工程, 2018(6): 75 ? 87. doi: 10.16483/j.issn.1005-9865.2017.06.009MENG Xiangjian, WANG Shuqing, YAO Lu. Research on equivalent simplification model of glass fiber-reinforced flexible pipes [J]. The Ocean Engineering, 2018(6): 75 ? 87. (in Chinese) doi: 10.16483/j.issn.1005-9865.2017.06.009 [31] 张元盛, 刘涛, 龙岩, 等. 拉伸作用下复合材料柔性管失效预测[J]. 石油机械, 2023, 51(1): 61 ? 69. doi: 10.16082/j.cnki.issn.1001-4578.2023.01.009ZHANG Yuansheng, LIU Tao, LONG Yan, et al. Failure prediction of composite flexible pipes under tension [J]. China Petroleum Machinery, 2023, 51(1): 61 ? 69. (in Chinese) doi: 10.16082/j.cnki.issn.1001-4578.2023.01.009 [32] 曾鑫. 内外压下热塑性复合材料柔性管力学性能及其优化设计研究[D]. 青岛: 中国石油大学(华东), 2020.ZENG Xin. Study on mechanical properties and optimum design of thermoplastic composite flexible pipe under internal and external pressure [D]. Qingdao: China University of Petroleum (East China), 2020. (in Chinese) -