RESEARCH ON MULTI-TYPE MEASUREMENT DATA FUSION METHOD FOR STRESS INTENSITY FACTOR EVALUATION
-
摘要: 海洋结构在服役期间,不可避免地受到复杂的环境载荷和操作载荷的作用。对于金属材料的海洋结构,断裂是其失效的主要形式,所以,及时、准确地监测裂纹的萌生和扩展是很有必要的。而应力强度因子(SIF)是判断裂纹失稳扩展的一个重要指标。该文在现有研究的基础上,将基于单应变片(SSG)和最大张口位移(CMOD)的SIF的确定方法相结合,提出了一种基于数据融合的SIF的估计方法。对该方法进行了数值模拟和实验验证,结果表明,该方法适用于多种配置的裂纹试件,且与基于单应变片和最大张口位移的方法相比,所提方法可以获得更精确的结果,相对误差(RE)不超过1.2%。Abstract: Fracture is the main failure form of marine structures due to the action of ocean waves. It is necessary to monitor the initiation and extension of the crack timely and accurately, and the SIF (Stress Intensity Factor) is an important indicator for judging the propagation of cracks. Based on the existing research, this study combines the calculation method for SIF based on single strain gauge (SSG) and maximum crack opening displacement (CMOD) and, proposes a method based on Kalman filter (KF). Numerical simulation and experimental verifications of this method have been carried out. The results show that the method can be used for a variety of configurations of pre-cracked specimens. And compared with the SSG-based and CMOD-based methods, the KF-based method can obtain more accurate results, the relative errors (RE) is not more than 1.2%.
-
表 1 不同裂纹长度的适用径向长度
Table 1. Applicable radial lengths of different crack lengths
裂纹长度
a/mm裂纹长度/
试件长度a/b最小径向
长度rmin/mm最大径向
长度rmax/mm10 0.10 1.50 5.58 20 0.20 1.50 12.00 30 0.30 2.50 13.02 35 0.35 4.07 19.10 40 0.40 3.81 21.40 表 2 $ \sigma = $8.33 MPa下两种方法得到的SIF的相对误差
Table 2. The relative error of SIF obtained by two methods under $ \sigma = $8.33 MPa
a/b 经验值/
(MPa·mm0.5)单应变片方法 裂纹最大张口位移方法 径向
长度SIF/
(MPa·mm0.5)RE/
(%)SIF/
(MPa·mm0.5)RE/
(%)0.10 46.82 3.40 49.65 5.73 50.23 6.97 0.20 67.64 6.79 72.54 7.25 74.35 9.93 0.30 85.51 8.48 92.01 7.60 93.84 9.74 0.35 93.87 10.19 101.96 8.62 103.09 9.83 0.40 103.61 12.05 110.79 6.97 112.09 8.23 表 3 不同应力下两种方法得到的SIF的相对误差
Table 3. The relative errors of SIF obtained by two methods under different stresses
应力/
MPa经验值/
(MPa·mm0.5)单应变片方法 裂纹最大张口位移方法 SIF/(MPa·mm0.5) RE/(%) SIF/(MPa·mm0.5) RE/(%) 0.417 5.18 5.54 6.93 5.61 8.23 2.08 25.90 27.70 6.93 28.03 8.23 4.17 51.81 55.40 6.93 56.07 8.23 6.25 77.71 83.09 6.93 84.10 8.23 8.33 103.61 110.79 6.93 112.09 8.23 表 4 含不同长宽比裂纹试件的SIF的相对误差
Table 4. The relative error of SIF of specimens with different aspect ratio cracks
a/b 相对误差/(%) SSG CMOD KF 0.10 5.73 6.97 0.61 0.20 7.25 9.93 0.10 0.30 7.60 9.73 0.67 0.35 8.62 9.82 0.01 0.40 6.97 8.23 0.75 表 5 不同水平噪声下计算结果的相对误差
Table 5. The relative errors of calculated results under different noise levels
噪声水平/(%) 相对误差/(%) SSG CMOD KF 1 7.15 8.53 0.24 2 7.84 10.10 0.30 3 8.73 10.12 0.35 4 7.94 9.62 0.98 表 6 加载过程中不同长宽比裂纹的SIF值
Table 6. SIF values of cracks with different aspect ratios during loading
加载力/kN 应力强度因子/ $ \text{(MPa}·{\text{mm}}^{0.5}) $ $a/b = 0.1$ $a/b = 0.2$ $a/b= 0.25$ $a/b= 0.3$ 真实值 KF 真实值 KF 真实值 KF 真实值 KF $4 \pm 0.1$ 38.406 31.338 54.238 49.448 61.258 37.013 69.368 47.363 $8 \pm 0.1$ 75.437 65.794 108.401 101.015 122.549 101.524 137.956 111.638 $12 \pm 0.1$ 112.381 103.773 162.757 148.281 183.944 164.540 201.856 184.472 $16 \pm 0.1$ 150.168 144.244 216.870 205.604 245.308 234.317 271.659 259.369 $20 \pm 0.1$ 187.834 185.400 271.245 266.088 306.450 303.470 339.939 333.865 $24 \pm 0.1$ 224.312 226.208 325.216 326.992 367.691 371.713 406.255 407.069 表 7 不同长宽比裂纹在不同加载力下的相对误差
Table 7. The relative errors of cracks with different aspect ratios under different loading forces
加载力/kN 相对误差/(%) ${a / b} = 0.1$ ${{{a / b}}} = 0.2$ SSG CMOD KF SSG CMOD KF $4 \pm 0.1$ 14.06 33.52 18.40 9.04 6.91 8.83 $8 \pm 0.1$ 13.69 28.87 12.78 13.45 7.92 6.81 $12 \pm 0.1$ 9.85 22.60 7.66 17.17 11.21 8.89 $16 \pm 0.1$ 7.07 18.73 3.94 13.21 11.96 5.19 $20 \pm 0.1$ 4.80 15.21 1.30 7.94 12.61 1.90 $24 \pm 0.1$ 3.02 12.22 0.85 4.39 12.75 0.55 加载力/kN ${a / b} = 0.25$ ${a / b} = 0.3$ SSG CMOD KF SSG CMOD KF $4 \pm 0.1$ 22.73 44.96 39.58 59.92 5.30 31.72 $8 \pm 0.1$ 11.70 18.90 17.16 42.73 1.93 19.07 $12 \pm 0.1$ 9.94 8.90 10.55 26.33 6.05 8.61 $16 \pm 0.1$ 8.79 2.76 4.48 18.45 5.60 4.52 $20 \pm 0.1$ 7.65 1.24 0.97 14.03 7.03 1.79 $24 \pm 0.1$ 6.96 3.60 0.70 11.18 8.50 0.20 -
[1] 唐达. 基于长期监测海洋平台结构损伤识别方法研究 [D]. 大连: 大连理工大学, 2018.TANG Da. Research on structural damage identification method of offshore platform based on long-term monitoring [D]. Dalian: Dalian University of Technology, 2018. (in Chinese) [2] WANG M M, WANG C Y, HNYDIUK-STEFAN A, et al. Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions [J]. Ocean Engineering, 2021, 232(6/7): 109168. [3] LIU G, LI Z R, LI Z Y, et al. A multi-axial fatigue-oriented strategy for fatigue damage monitoring and assessment of tubular joints [J]. Ocean Engineering, 2021, 227(1/2/3): 108876. [4] 张旭. 海洋结构物可靠性监测与分析方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.ZHANG Xu. Study on reliability monitoring and analysis methods of Marine structures [D]. Harbin: Harbin Engineering University, 2018. (in Chinese) [5] IRWIN G R. Analysis of stresses and strains near end of a crack traversing a plate [J]. Journal of Applied Mechanics, 1956, 24(24): 361 ? 364. [6] GRIFFITH A A. The phenomena of rupture and flows in solids [J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 1920, 221(4): 163 ? 198. doi: 10.1098/rsta.1921.0006 [7] KRAFT J, FAELLGREN C, VORMWALD M. Calculation of stress intensity factors from shell elements under mixed mode loading [J]. International Journal Of Fatigue, 2020, 134: 105447-1 ? 1054447-16. [8] 汪必升, 李毅波, 廖雅诗, 等. 基于扩展有限元模型的动态应力强度因子计算[J]. 中国机械工程, 2019, 30(11): 1294 ? 1301. doi: 10.3969/j.issn.1004-132X.2019.11.005WANG Bisheng, LI Yibo, LIAO Yashi, et al. Calculation of dynamic stress intensity factor based on extended finite element model [J]. China Mechnical Engineering, 2019, 30(11): 1294 ? 1301. (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.11.005 [9] YANG Junhui, LEI Yongjun. The enriched finite element analysis of stress intensity factor for a crack normal to bi-material interface [J]. Engineering Mechanics, 2016, 33(2): 59 ? 65. doi: 10.6052/j.issn.1000-4750.2014.10.0881 [10] 陈莘莘, 刁呈岩, 肖树聪. 线弹性断裂力学问题的扩展自然单元法[J]. kb88凯时集团官网, 2020, 37(7): 1 ? 7. doi: 10.6052/j.issn.1000-4750.2019.09.0502CHEN Shenshen, DIAO Chengyan, XIAO Shucong. An extended natural element method for linear elastic fracture problems [J]. Engineering Mechanics, 2020, 37(7): 1 ? 7. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0502 [11] 李戎, 杨萌 , 梁斌, 等. 基于裂纹尖端应力比值的含裂纹功能梯度材料圆筒应力强度因子计算方法[J]. kb88凯时集团官网, 2020, 37(4): 22 ? 29. doi: 10.6052/j.issn.1000-4750.2019.06.0291LI Rong, YANG Meng, LIANG Bin, et al. Calculation method of stress intensity factor for cracked functionally graded hollow cylinder based on the ratio of stresses at crack tip [J]. Engineering Mechanics, 2020, 37(4): 22 ? 29. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0291 [12] PRASAD N N V, ALIABADI M H, ROOKE D P. The dual boundary-element method for thermoelastic crack problems [J]. International Journal of Fracture, 1994, 66(3): 255 ? 272. doi: 10.1007/BF00042588 [13] ZHENG H, SLADEK J, SLADEK V, et al. Hybrid meshless/displacement discontinuity method for FGM Reissner's plate with cracks [J]. Applied Mathematical Modelling, 2021, 90: 1226 ? 1244. doi: 10.1016/j.apm.2020.10.023 [14] DALLY J W, SANFORD R J. STRAIN-gage methods for measuring the opening-mode stress-intensity factor, KI [J]. Experimental Mechanics, 1987, 27(4): 381 ? 388. doi: 10.1007/BF02330311 [15] SARANGI H, MURTHY K S R K, CHAKRABORTY D. Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors [J]. Engineering Fracture Mechanics, 2013, 110: 189 ? 200. doi: 10.1016/j.engfracmech.2013.07.014 [16] WEI J, ZHAO J H. A two-strain-gage technique for determining mode I stress-intensity factor [J]. Theoretical and Applied Fracture Mechanics, 1997, 28(2): 135 ? 140. doi: 10.1016/S0167-8442(97)00038-4 [17] MAKSIMENKO V N , TYAGNII A V . Calculation of fracture parameters based on crack opening displacements [C]. Tomsk: Russian-korean International Symposium on Science & Technology, IEEE, 2004: 39 ? 42. [18] 陈景杰. 含裂纹损伤船体结构强度分析方法研究[D]. 大连: 大连理工大学, 2011.CHEN Jingjie. Research on strength analysis method of hull structur e with crack damage [D]. Dalian: Dalian University of Technology, 2011. (in Chinese) [19] CHEN J, FAN X, HUANG Y. A pratical method of stress intensity factors for two collinear cracks [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(4): 61 ? 67. [20] CHEN J J, HUANG Y, LI Y G, et al. Research on calculation of dsif based on maximum crack opening displacement [C]. Trondheim: 36th ASME International Conference on Ocean, Offshore and Arctic Engineering, 2017. [21] PARK J W, MOON D S, YOON H, et al. Visual-inertial displacement sensing using data fusion of vision-based displacement with acceleration [J]. Structural Control & Health Monitoring, 2018, 25(3): 1 ? 14. [22] BADO M F, KAKLAUSKAS G, CASAS J R. Performance of distributed optical fiber sensors (DOFS) and digital image correlation (DIC) in the monitoring of RC structures [J]. IOP Conference Series Materials Science and Engineering, 2019, 615: 012101. [23] RAVIZZA G, FERRARI R, RIZZI E, et al. Effective heterogeneous data fusion procedure via Kalman filtering [J]. Smart Structures and Systems, 2018, 22(5): 631 ? 641. [24] ZHU H P, GAO K, XIA Y, et al. Multi-rate data fusion for dynamic displacement measurement of beam-like supertall structures using acceleration and strain sensors [J]. Structural Health Monitoring - An International Journal, 2020, 19(2): 520 ? 536. doi: 10.1177/1475921719857043 [25] WU R T, JAHANSHAHI M R. Data fusion approaches for structural health monitoring and system identification: Past, present, and future [J]. Structural Health Monitoring - An International Journal, 2020, 19(2): 552 ? 586. doi: 10.1177/1475921718798769 [26] JIN S S, KIM S T, PARK Y H. Combining point and distributed strain sensor for complementary data-fusion: A multi-fidelity approach [J]. Mechanical Systems and Signal Processing, 2021, 157: 107725. doi: 10.1016/j.ymssp.2021.107725 [27] CHANG Q, YANG W X, LIU J, et al. A research on fatigue crack growth monitoring based on multi-sensor and data fusion [J]. Structural Health Monitoring-an International Journal, 2021, 20(3): 848 ? 860. doi: 10.1177/1475921719865727 [28] 彭丁聪. 卡尔曼滤波的基本原理及应用[J]. 软件导刊, 2009, 8(11): 32 ? 34.PENG Dingcong. Basic principle and application of Kalman filter [J]. Software Guide, 2009, 8(11): 32 ? 34. (in Chinese) [29] CHAKRABORTY D, MURTHY K, CHAKRABORTY D. A new single strain gage technique for the accurate determination of mode I stress intensity factor in orthotropic composite materials [J]. Engineering Fracture Mechanics, 2014, 124: 142 ? 154. [30] 赵章焰, 吕运冰, 孙国正. J积分法测量低碳钢Q235的断裂韧性KIC[J]. 武汉理工大学学报, 2002, 24(4): 111 ? 112. doi: 10.3321/j.issn:1671-4431.2002.04.032ZHAO Zhangyan, LYU Yunbing, SUN Guozheng. Experiment measuring fracture toughness of Q235 steel by J integral [J]. Journal of Wuhan University of Technology, 2002, 24(4): 111 ? 112. (in Chinese) doi: 10.3321/j.issn:1671-4431.2002.04.032 [31] TADA H, PARIS P C, IRWIN G R. The stress analysis of cracks handbook [M]. Hellertown, Pa.: Del Research Corporation, 1985. -