COMPARATIVE STUDY ON DEFORMATION CHARACTERISTICS OF BALLAST TRIAXIAL SPECIMENS WITH SIMULATION METHODS OF DIFFERENT PARTICLE SHAPES
-
摘要: 道砟不规则形态是影响有砟道床变形特性的重要因素,对道砟形状及棱角分布等不同尺度形态特征的刻画与数值重构仍是道砟仿真研究的热点问题。该文采用形态重构方法,生成了符合真实道砟形态指标概率分布的多面体道砟试样,构建了不同围压下道砟三轴加载计算模型,并将该仿真结果与三维扫描生成、非统计随机生成的道砟试样的仿真结果及室内试验结果对比分析。结果表明:围压提高,颗粒形态对道砟力学响应的影响逐渐显著,该文方法重构数值试样的应力-应变结果与试验结果的符合度高于非统计随机生成试样;道砟试样横向变形与堆积结构调整有关,与三维扫描生成的道砟试样相比,非统计随机生成试样的颗粒调整程度与侧向鼓胀范围均偏大;形态统计特征对道砟接触力演化趋势影响不大,但是不同形态特征的道砟最大接触力水平差异近50%。Abstract: Particle shape plays an essential role in deformation characteristics of railway ballast bed. The numerical reconstruction of ballast morphological features, including overall shape and angular distribution, remains a hot issue in research on ballast mechanical behavior simulation. A novel shape reconstruction method was adopted to generate ballast particles that met the desired probability density distribution of morphological indices. On this basis, the numerical model of ballast triaxial tests were established under different confining pressures. The results were compared with those obtained from indoor tests and simulations whose particles were generated from 3D scanning or non-statistical random generation. The results show that the particle shape has a growing effect on the mechanical response of ballast, with an increase in confining pressure. The relation between deviatoric stress and axial strain in the specimen which meets the probability density distribution is more consistent with the experimental results than that of the non-statistical randomly generated specimen. The lateral deformation of ballast is correlated with the adjustment of the packing structure. For non-statistical randomly generated specimen, both the lateral deformation and the particle adjustment are larger than those generated by 3D scanning. The ballast contact force evolution is less influenced by its morphological features. Nevertheless, the difference in the maximum contact force of specimens with various particle shapes is nearly 50%.
-
图 3 道砟颗粒形态简化示意图[19]
Figure 3. Schematic diagram of ballast shape simplification
表 1 离散元模型细观参数
Table 1. Mesoscopic parameters of DEM
离散元域 密度
ρ/
(kg/m3)法向接触
刚度kn/(N/m3)切向接触
刚度ks/(N/m3)摩擦
系数μ接触
阻尼α球颗粒 2600 5.5×108 4.83×108 1.03 0.03 非统计随机生成颗粒 2600 1.82×1010 1.6×1010 0.8 0.03 基于形态指标概率
分布重构颗粒2600 1.82×1010 1.6×1010 0.65 0.03 三维扫描颗粒 2600 1.82×1010 1.6×1010 0.68 0.03 表 2 橡胶膜有限元模型参数
Table 2. Parameters of rubber membrane
有限元域 密度ρ/
(kg/m3)体积模量/Pa 泊松比ν 摩擦
系数μ阻尼系数α 橡胶 1100 1.0×107 0.47 0.8 0.2 -
[1] 邵帅, 严颖, 季顺迎. 土工格栅加强下有砟铁路道床动力特性的离散元-有限元耦合分析[J]. 固体力学学报, 2016, 37(5): 444 ? 455.SHAO Shuai, YAN Ying, JI Shunying. Discrete -finite element analysis of dynamic behaviors of ballasted railway with geogrid reinforcement [J]. Chinese Journal of Solid Mechanics, 2016, 37(5): 444 ? 455. (in Chinese) [2] HUANG H, TUTUMLUER E, DOMBROW W. Laboratory characterization of fouled railroad ballast behavior [J]. Transportation research record, 2009, 2117(1): 93 ? 101. doi: 10.3141/2117-12 [3] LACKENBY J, INDRARATNA B, MCDOWELL G, et al. Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading [J]. Géotechnique, 2007, 57(6): 527 ? 536. [4] 于玉贞, 张向韬, 王远, 等. 堆石料真三轴条件下力学特性试验研究进展[J]. kb88凯时集团官网, 2020, 37(4): 1 ? 21.YU Yuzhen, ZHANG Xiangtao, WANG Yuan, et al. State-of-the-art: experimental study on mechanical properties of rockfill materials under true triaxial conditions [J]. Engineering Mechanics, 2020, 37(4): 1 ? 21. (in Chinese) [5] LIU S, QIU T, QIAN Y, et al. Simulations of large-scale triaxial shear tests on ballast aggregates using sensing mechanism and real-time (SMART) computing [J]. Computers and Geotechnics, 2019, 110: 184 ? 198. doi: 10.1016/j.compgeo.2019.02.010 [6] KARATZA Z, AND? E, PAPANICOLOPULOS S A, et al. Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography [J]. Granular Matter, 2019, 21(3): 1 ? 13. [7] 王蕴嘉, 宋二祥, 张千里. 颗粒形状对堆石料力学特性影响的离散元分析[J]. kb88凯时集团官网, 2022, 39(3): 137 ? 146. doi: 10.6052/j.issn.1000-4750.2021.01.0061WANG Yunjia, SONG Erxiang, ZHANG Qianli. Dem analysis of the aggregate shape effect on mechanical properties of rockfill [J]. Engineering Mechanics, 2022, 39(3): 137 ? 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0061 [8] 边学成, 李伟, 李公羽, 等. 基于颗粒真实几何形状的铁路道砟剪切过程三维离散元分析[J]. kb88凯时集团官网, 2015, 47(9): 135 ? 144.BIAN Xuecheng, LI Gongyu, LI Wei, et al. Morphology analysis of coarse aggregate based on 3d imaging method by using two planar mirrors [J]. Engineering Mechanics, 2015, 47(9): 135 ? 144. (in Chinese) [9] AZEMA E, RADJAI F, SAUSSINE G. Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles [J]. Mechanics of Materials, 2009, 41(6): 729 ? 741. doi: 10.1016/j.mechmat.2009.01.021 [10] RANTATALO M. Modelling of Railway Sleeper Settlement under Cyclic Loading Using a Hysteretic Ballast Contact Model [J]. Sustainability, 2021, 13(21): 12247. [11] DANESH A, MIRGHASEMI A A, PALASSI M. Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM) [J]. Transportation Geotechnics, 2020, 23: 100357. doi: 10.1016/j.trgeo.2020.100357 [12] 张徐, 赵春发, 翟婉明, 等. 铁路有砟道床振动和变形的离散元模拟与试验验证[J]. 岩土力学, 2017, 38(5): 1481 ? 1488.ZHANG Xu, ZHAO Chunfa, ZHAI Wanming, et al. Discrete element simulation and its validation on vibration and deformation of railway ballast [J]. Rock and Soil Mechanics, 2017, 38(5): 1481 ? 1488. (in Chinese) [13] GUO Y, ZHAO C, MARKINE V, et al. Discrete element modelling of railway ballast performance considering particle shape and rolling resistance [J]. Railway Engineering Science, 2020, 28(4): 382 ? 407. doi: 10.1007/s40534-020-00216-9 [14] BIAN X, LI W, QIAN Y, et al. Micromechanical particle interactions in railway ballast through DEM simulations of direct shear tests [J]. International Journal of Geomechanics, 2019, 19(5): 04019031. doi: 10.1061/(ASCE)GM.1943-5622.0001403 [15] XU Y, YU W, QIE L, et al. Analysis of influence of ballast shape on abrasion resistance using discrete element method [J]. Construction and Building Materials, 2020: 121708. [16] QIAN Y, LEE S J, TUTUMLUER E, et al. Role of initial particle arrangement in ballast mechanical behavior [J]. International Journal of Geomechanics, 2018, 18(3): 04017158. doi: 10.1061/(ASCE)GM.1943-5622.0001074 [17] NOURA O, CHARLES V, GUILLAUME P, et al. 3D Particle Shape modelling and optimization through proper orthogonal decomposition application to railway ballast [J]. Granular Matter, 2017, 19(4): 86-1 ? 86-14. [18] SUHR B, SKIPPER W A, LEWIS R, et al. DEM modelling of railway ballast using the Conical Damage Model: a comprehensive parametrisation strategy [J]. Granular Matter, 2022, 24(1): 1 ? 25. doi: 10.1007/s10035-021-01137-y [19] XIAO J, ZHANG X, ZHANG D, et al. Morphological reconstruction method of irregular shaped ballast particles and application in numerical simulation of ballasted track [J]. Transportation Geotechnics, 2020, 24: 100374. doi: 10.1016/j.trgeo.2020.100374 [20] KRUMBEIN W C. Measurement and Geological Significance of Shape and Roundness of Sedimentary Particles [J]. Journal of Sedimentary Research, 1941, 11(2): 64 ? 72. [21] TB/T2140?2008, 铁路碎石道砟[S]. 北京: 中国铁道出版社, 2008.TB/T 2140?2008, Railway Ballast [S]. Beijing: China Railway Publishing House, 2008. (in Chinese) [22] 井国庆, 王子杰, 施晓毅. 多围压下三轴压缩试验与不可破裂颗粒离散元法分析[J]. kb88凯时集团官网, 2015, 32(10): 82 ? 88. doi: 10.6052/j.issn.1000-4750.2014.03.0205JING Guoqing, WANG Zijie, SHI Xiaoyi. Ballast triaxial test and non-breakable particle discrete element method analysis under different confining pressures [J]. Engineering Mechanics, 2015, 32(10): 82 ? 88. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.03.0205 [23] ELI?? J. Simulation of railway ballast using crushable polyhedral particles [J]. Powder Technology, 2014, 264(264): 458 ? 465. [24] 肖军华, 张德, 王延海, 等. 基于DEM-FDM耦合的普通铁路碎石道床-土质基床界面接触应力分析[J]. kb88凯时集团官网, 2018, 35(9): 170 ? 179. doi: 10.6052/j.issn.1000-4750.2017.06.0422XIAO Junhua, ZHANG De, WANG Yanhai, et al. Study on interface stress between ballast and subgrade for traditional railway based on coupled DEM-FDM [J]. Engineering Mechanics, 2018, 35(9): 170 ? 179. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0422 [25] 马刚, 周伟, 常晓林, 等. 堆石体三轴剪切试验的三维细观数值模拟[J]. 岩土工程学报, 2011, 33(5): 80 ? 87.MA Gang, ZHOU Wei, CHANG Xiaolin, et al. 3D mesoscopic numerical simulation of triaxial shear tests for rockfill [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 80 ? 87. (in Chinese) [26] 李鹏鹏, 周伟, 熊美林, 等. 复杂形状颗粒DEM模拟及其对宏观力学响应影响研究[J]. 武汉大学学报(工学版), 2018, 51(6): 478 ? 486. doi: 10.14188/j.1671-8844.2018-06-002LI Pengpeng, ZHOU Wei, XIONG Meilin, et al. Study of DEM modeling of irregular shaped particle and its influence on macromechanical response [J]. Engineering Journal of Wuhan University, 2018, 51(6): 478 ? 486. (in Chinese) doi: 10.14188/j.1671-8844.2018-06-002 [27] ZHAO S, ZHOU X. Effects of particle asphericity on the macro-and micro-mechanical behaviors of granular assemblies [J]. Granular Matter, 2017, 19(2): 38. doi: 10.1007/s10035-017-0725-6 [28] 潘洪武, 王伟, 张丙印. 基于计算接触力学的粗颗粒土体材料细观性质模拟[J]. kb88凯时集团官网, 2020, 37(7): 151 ? 158. doi: 10.6052/j.issn.1000-4750.2019.08.0490AN Hongwu, WANG Wei, ZHANG Bingyin. Simulation on meso-mechanical property of coarse-grained soil materials based on computational contact method [J]. Engineering Mechanics, 2020, 37(7): 151 ? 158. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0490 -