留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢管混凝土柱-波纹腹板H形钢梁栓焊混合加腋节点抗倒塌能力研究

王景玄 王文琦 周侃

王景玄, 王文琦, 周侃. 钢管混凝土柱-波纹腹板H形钢梁栓焊混合加腋节点抗倒塌能力研究[J]. kb88凯时集团官网, 2023, 40(9): 190-202. doi: 10.6052/j.issn.1000-4750.2022.05.0423
引用本文: 王景玄, 王文琦, 周侃. 钢管混凝土柱-波纹腹板H形钢梁栓焊混合加腋节点抗倒塌能力研究[J]. kb88凯时集团官网, 2023, 40(9): 190-202. doi: 10.6052/j.issn.1000-4750.2022.05.0423
WANG Jing-xuan, WANG Wen-qi, ZHOU Kan. RESEARCH ON THE ANTI-COLLAPSE CAPACITY OF CFST COLUMN-CORRUGATED WEB H-SHAPED STEEL BEAM HAUNCH JOINT WITH HYBRID BOLTED WELDING CONNECTION[J]. Engineering Mechanics, 2023, 40(9): 190-202. doi: 10.6052/j.issn.1000-4750.2022.05.0423
Citation: WANG Jing-xuan, WANG Wen-qi, ZHOU Kan. RESEARCH ON THE ANTI-COLLAPSE CAPACITY OF CFST COLUMN-CORRUGATED WEB H-SHAPED STEEL BEAM HAUNCH JOINT WITH HYBRID BOLTED WELDING CONNECTION[J]. Engineering Mechanics, 2023, 40(9): 190-202. doi: 10.6052/j.issn.1000-4750.2022.05.0423

钢管混凝土柱-波纹腹板H形钢梁栓焊混合加腋节点抗倒塌能力研究

doi: 10.6052/j.issn.1000-4750.2022.05.0423
基金项目: 国家自然科学基金项目(52068047,51708270)
详细信息
    作者简介:

    王文琦(1997?),男,甘肃人,硕士生,主要从事钢管混凝土结构抗连续倒塌研究(E-mail: cewangwq@163.com)

    周 侃(1989?),男,辽宁人,讲师,博士,从事钢-混凝土组合结构性能研究(E-mail: k.zhou@leedsbeckett.ac.uk)

    通讯作者:

    王景玄(1986?),男,甘肃人,副教授,博士,硕导,从事钢管混凝土组合结构抗连续倒塌及抗火性能研究(E-mail: cewangjx@lut.edu.cn)

  • 中图分类号: TU398+.9

RESEARCH ON THE ANTI-COLLAPSE CAPACITY OF CFST COLUMN-CORRUGATED WEB H-SHAPED STEEL BEAM HAUNCH JOINT WITH HYBRID BOLTED WELDING CONNECTION

  • 摘要: 该文基于ABAQUS/Implicit建立了钢管混凝土柱-H形钢梁栓焊混合节点抗连续倒塌数值模型。为提高该类节点的抗倒塌承载力,采用了波纹腹板H形钢梁和下翼缘加腋构造。分析该类节点在竖向荷载作用下的破坏特征和失效机理,并考虑波纹腹板的“折叠效应”对节点抗倒塌能力的影响。研究结果表明,钢管混凝土柱-平腹板H形钢梁节点(J-WB-O)的破坏出现在环板和钢梁连接位置,而钢管混凝土柱-波纹腹板H形钢梁加腋节点(J-CW-AP)的破坏远离环板与钢梁连接位置,延缓了钢梁下翼缘断裂;此外,J-WB-O节点钢梁全截面提供倒塌抗力,而J-CW-AP节点在加载初期波纹腹板几乎不提供倒塌抗力,当下翼缘断裂后波纹腹板开始受力,并且随着裂缝的向上延伸波纹腹板截面依次呈现受拉状态,表现为波纹腹板波纹逐渐拉开的过程即为“折叠效应”,延缓了腹板开裂和局部屈曲。对比普通栓焊混合节点J-WB-O,波纹腹板H形钢梁栓焊混合加腋节点J-CW-AP的极限承载力与延性分别提高了67.2%和62.3%。基于抗力机制分析,给出了钢管混凝土柱-波纹腹板H形钢梁栓焊混合加腋节点抗倒塌承载力简化计算公式。
  • 图  1  波纹腹板的工程应用

    Figure  1.  Application of corrugated web in practical engineering

    图  2  双半跨梁柱子结构简化模型

    Figure  2.  Simplified model with double-half beam and column substructure

    图  3  钢管混凝土节点破坏过程及加强方法

    Figure  3.  Failure and strengthening methods of CFST joint

    图  4  J-CW-AP节点构造形式

    Figure  4.  Configuration of J-CW-AP joint

    图  5  节点的网格划分与边界条件

    Figure  5.  Boundary conditions and meshes of the joint

    图  6  钢材应力-应变关系

    Figure  6.  The stress–strain relationship of steel

    图  7  ST-WB节点尺寸详图 /mm

    Figure  7.  Details of ST-WB joints

    图  8  ST-WB节点试验与模拟对比

    Figure  8.  Comparison between calculation and test results of ST-WB joint

    图  9  试件SJ-RP尺寸详图 /mm

    Figure  9.  Details of SJ-RP joint specimen

    图  10  SJ-RP试件试验与模拟对比

    Figure  10.  Comparison between calculation and test results of SJ-RP specimen

    图  11  节点破坏特征对比分析

    Figure  11.  Comparison of joints failure characteristics

    图  12  各破坏阶段水平力和应力矢量对比图

    Figure  12.  Comparison between horizontal force and stress vector of steel beam at different stages

    图  13  钢梁等效塑性应变图

    Figure  13.  Equivalent plastic strain of steel section

    图  14  竖向荷载-位移曲线对比

    Figure  14.  Comparison of vertical load-displacement curves

    图  15  节点内力分析模型

    Figure  15.  Internal force analysis model for joints

    图  16  节点内力对比图

    Figure  16.  Comparison of internal force of joints

    图  17  钢管混凝土节点理论分析模型

    Figure  17.  Theoretical analysis model for CFST joints

    图  18  J-WB-O和J-CW-AP节点各受力阶段计算模型

    注:F为轴力;Mp为塑性极限弯矩;Fp为塑性极限轴力;L为钢梁跨度;Lh为腋板水平投影长度;a为钢梁转角。用不同的下标区分节点的不同组件,例如:“e”为翼缘;“w”为腹板;“cw”为波纹腹板;“Q”为连接板;“h”为腋板。

    Figure  18.  Calculation models for J-WB-O and J-CW-AP joints at different stages

    图  19  波纹腹板拉伸过程 /mm

    Figure  19.  Stretching process of corrugated web

    图  20  ST-WB节点试验与计算曲线对比

    Figure  20.  Comparison between test and calculated curves

    图  21  节点模拟与计算曲线对比

    Figure  21.  Comparison between simulated and calculated curves

    图  22  J-WB-O节点受力全过程的函数关系曲线

    Figure  22.  Functions of the whole process of J-WB-O joint

    图  23  J-CW-AP节点受力全过程的函数关系曲线

    Figure  23.  Functions of the whole process of J-CW-AP joint

    表  1  两类节点几何信息

    Table  1.   Geometric information of two joints

    节点类型 钢梁尺寸
    hb×bb×te×tf/mm
    钢管尺寸
    B×t/mm
    水平投影长度
    L/mm
    腋角
    θ/(°)
    腋板厚度
    t/mm
    J-WB-O H300×150×6×8 □250×4 ? ? ?
    J-CW-AP H300×150×3×8 □250×4 346 30 10
    注:B为钢管柱截面边长;t为钢管壁厚度;hb为钢梁高度;bb为钢梁翼缘宽度;te为腹板厚度;tf为翼缘厚度。
    下载: 导出CSV
  • [1] GSA 2016, Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects [S]. Washington, D. C. : The U. S. General Services Administration, 2016.
    [2] DoD 2016, Design of building to resist progressive collapse: UFC 4-023-03 [S]. Washington, DC: Department of Defense, 2016.
    [3] T/CECS 392?2021, 建筑结构抗倒塌设计标准[S]. 北京: 中国计划出版社, 2021.

    T/CECS 392?2021, Standard for anti-collapse design of building structures [S]. Beijing: China Planning Press, 2021. (in Chinese)
    [4] ALSHAIKH I M H, BAKAR B H A, ALWESABI E A, et al. Finite element analysis and experimental validation of progressive collapse of reinforced rubberized concrete frame [J]. Structures, 2021, 33: 2361 ? 2373. doi: 10.1016/j.istruc.2021.06.008
    [5] 陈泽帆, 林楷奇, 陆新征, 等. RC框架梁柱子结构抗连续倒塌性能不确定性分析[J]. kb88凯时集团官网, 2021, 38(6): 72 ? 80. doi: 10.6052/j.issn.1000-4750.2020.07.0464

    CHEN Zefan, LIN Kaiqi, LU Xinzheng, et al. Uncertainty analysis on progressive collapse resistance of RC beam-column substructures [J]. Engineering Mechanics, 2021, 38(6): 72 ? 80. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0464
    [6] 周云, 陈太平, 胡翔, 等. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. kb88凯时集团官网, 2019, 36(1): 216 ? 226. doi: 10.6052/j.issn.1000-4750.2017.11.0887

    ZHOU Yun, CHEN Taiping, HU Xiang, et al. Progressive collapse resistance of RC frame structures considering surrounding structural constraints [J]. Engineering Mechanics, 2019, 36(1): 216 ? 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0887
    [7] 余洋, 李治, 肖龙山, 等. 边柱失效后预应力拼接连接装配式结构抗连续倒塌机理研究[J]. kb88凯时集团官网, 2021, 38(4): 159 ? 168. doi: 10.6052/j.issn.1000-4750.2020.06.0366

    YU Yang, LI Zhi, XIAO Longshan, et al. Load resisting mechanism of precast structure under exterior column failure [J]. Engineering Mechanics, 2021, 38(4): 159 ? 168. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0366
    [8] QIN X, WANG W, CHEN Y Y. A special reinforcing technique to improve resistance of beam-to-tubular column connections for progressive collapse prevention [J]. Engineering Structures, 2016, 117: 26 ? 39. doi: 10.1016/j.engstruct.2016.03.012
    [9] 孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. kb88凯时集团官网, 2018, 35(6): 88 ? 96. doi: 10.6052/j.issn.1000-4750.2017.02.0120

    MENG Bao, ZHONG Weihui, HAO Jiping. Experimental study on anti-collapse performance for beam-to-column assemblies of steel frame based on joint stiffness [J]. Engineering Mechanics, 2018, 35(6): 88 ? 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.02.0120
    [10] WANG W D, ZHENG L, LI H W. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario [J]. Engineering Structures, 2020, 219: 110956. doi: 10.1016/j.engstruct.2020.110956
    [11] BREGOLI G, VASDRAVELLIS G, KARAVASILIS T L, et al. Static and dynamic tests on steel joints equipped with novel structural details for anti-collapse mitigation [J]. Engineering Structures, 2021, 232: 111829. doi: 10.1016/j.engstruct.2020.111829
    [12] 王景玄, 杨永, 周侃, 等. 角柱失效下钢管混凝土柱-组合梁框架抗连续倒塌能力研究[J]. kb88凯时集团官网, 2022, 39(5): 105 ? 118. doi: 10.6052/j.issn.1000-4750.2021.02.0147

    WANG Jingxuan, YANG Yong, ZHOU Kan, et al. Research on progressive collapse resistance capacity of composite frame with CFST columns under corner column removal scenario [J]. Engineering Mechanics, 2022, 39(5): 105 ? 118. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0147
    [13] WANG J X, SHEN Y J, GAO S, et al. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal [J]. Engineering Structures, 2022, 266: 114635. doi: 10.1016/j.engstruct.2022.114635
    [14] FENG P, QIANG H L, QIN W H, et al. A novel kinked rebar con figuration for simultaneously improving the seismic performance and progressive collapse resistance of RC frame Structures [J]. Engineering Structures, 2017, 147: 752 ? 767. doi: 10.1016/j.engstruct.2017.06.042
    [15] YANG X J, LIN F, GU X L. Experimental study on a novel method to improve progressive collapse resistance of RC frames using locally debonded rebars [J]. Journal of Building Engineering, 2021, 41: 102428. doi: 10.1016/j.jobe.2021.102428
    [16] LIN K Q, LU X Z, LI Y, et al. A novel structural detailing for the improvement of seismic and progressive collapse performances of RC frames [J]. Earthquake Engineering & Structural Dynamics, 2019(3): 1 ? 20.
    [17] LU X Z, ZHANG L, LIN K Q, et al. Improvement to composite frame systems for seismic and progressive collapse resistance [J]. Engineering Structures, 2019, 186: 227 ? 242. doi: 10.1016/j.engstruct.2019.02.006
    [18] TIAN Y, LIN K Q, ZHANG L, et al. Novel seismic-progressive collapse resilient super-tall building system [J]. Journal of Building Engineering, 2021, 41: 102790. doi: 10.1016/j.jobe.2021.102790
    [19] QIAO H Y, XIE X Y, CHEN Y. Improvement of progressive collapse resistance for a steel frame system with beam-web opening [J]. Engineering Structures, 2022, 256: 113995. doi: 10.1016/j.engstruct.2022.113995
    [20] MENG B ZHONG W H, HAO J P, et al. Improved steel frame performance against progressive collapse with infill panels [J]. Journal of Constructional Steel Research, 2019, 158: 201 ? 212. doi: 10.1016/j.jcsr.2019.03.022
    [21] WANG J X, YANG Y, XIAN W, et al. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted–welded hybrid connection [J]. International Journal of Steel Structures, 2020, 20(5): 1618 ? 1635. doi: 10.1007/s13296-020-00397-3
    [22] ZHENG L, WANG W D, XIAN W. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam [J]. Engineering Structures, 2022, 256(2022): 114061.
    [23] 张哲, 李国强, 孙飞飞. 波纹腹板H型钢梁受弯稳定性研究[J]. kb88凯时集团官网, 2011, 28(8): 72 ? 82.

    ZHANG Zhe, LI Guoqiang, SUN Feifei. Research on flexural stability of the h-beams with corrugated webs [J]. Engineering Mechanics, 2011, 28(8): 72 ? 82. (in Chinese)
    [24] ELKAWAS A A, HASSANEIN M F, HADIDY A M E, et al. Behaviour of corrugated web girders subjected to lateral-torsional buckling: Experimental tests and numerical modelling [J]. Structures, 2021, 33: 152 ? 168. doi: 10.1016/j.istruc.2021.04.057
    [25] 谢梦洁, 邹昀, 王城泉, 等. 新型预应力外包波纹钢-混凝土组合梁受弯性能试验研究[J]. kb88凯时集团官网, 2021, 38(7): 64 ? 74. doi: 10.6052/j.issn.1000-4750.2020.07.0461

    XIE Mengjie, ZOU Yun, WANG Chengquan, et al. Experiment study on bending behavior of novel prestressed steel-encased concrete composite beam with corrugated steel webs [J]. Engineering Mechanics, 2021, 38(7): 64 ? 74. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0461
    [26] 王景玄, 杨永, 孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报, 2022, 55(8): 1 ? 13.

    WANG Jingxuan, YANG Yong, SUN Yanhao. Research on progressive collapse resistance of composite frame with concrete filled steel tubular columns and full-height infill walls [J]. China Civil Engineering Journal, 2022, 55(8): 1 ? 13. (in Chinese)
    [27] SHI G, ZHAO H T, CHEN X S, et al. Experimental study of cyclic behavior of retrofitted beam-to-column joints with welded haunches [J]. Journal of Constructional Steel Research, 2020, 171: 106146. doi: 10.1016/j.jcsr.2020.106146
    [28] CECS 291: 2011, 波纹腹板钢结构技术规程 [S]. 北京: 中国计划出版社, 2011.

    CECS 291: 2011, Technical specification for steel structures with corrugated webs [S]. Beijing: China Planning Press, 2011. (in Chinese)
    [29] AISC, Steel Design Guide Series 12: Modification of Existing Welded Steel Moment Frame Connections for Seismic Resistance [S]. Chicago: AISC, 2003.
    [30] 韩林海. 钢管混凝土结构-理论与实践[M]. 第三版. 北京: 科学出版社, 2016: 73 ? 74.

    HAN Linhai. Concrete filled steel tubular structures-theory and practice [M]. 3rd ed. Beijing: Science Press, 2016: 73 ? 74. (in Chinese)
    [31] ESMAEILY A, XIAO Y. Behavior of reinforced concrete columns under variable axial loads: analysis [J]. ACI Structure Journal, 2005, 102(5): 736 ? 744.
    [32] GRUBEN G, FAGERHOLT E, HOPPERATAD O S, et al. Fracture characteristics of a cold-rolled dual-phase steel [J]. European Journal of Mechanics-A/Solids, 2011, 30(3): 204 ? 218.
    [33] YU H L, JEONG D Y. Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens [J]. Theoretical and Applied Fracture Mechanics, 2010, 54(1): 54 ? 62. doi: 10.1016/j.tafmec.2010.06.015
    [34] 周天华, 李文超, 管宇, 等. 基于应力三轴度的钢框架循环加载损伤分析[J]. kb88凯时集团官网, 2014, 31(7): 146 ? 155. doi: 10.6052/j.issn.1000-4750.2013.01.0090

    ZHOU Tianhua, LI Wenchao, GUAN Yu, et al. Damage analysis of steel frames under cyclic load based on stress triaxiality [J]. Engineering Mechanics, 2014, 31(7): 146 ? 155. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.01.0090
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  55
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-07-25
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回
    sitemap网站地图