RESEARCH ON THE ANTI-COLLAPSE CAPACITY OF CFST COLUMN-CORRUGATED WEB H-SHAPED STEEL BEAM HAUNCH JOINT WITH HYBRID BOLTED WELDING CONNECTION
-
摘要: 该文基于ABAQUS/Implicit建立了钢管混凝土柱-H形钢梁栓焊混合节点抗连续倒塌数值模型。为提高该类节点的抗倒塌承载力,采用了波纹腹板H形钢梁和下翼缘加腋构造。分析该类节点在竖向荷载作用下的破坏特征和失效机理,并考虑波纹腹板的“折叠效应”对节点抗倒塌能力的影响。研究结果表明,钢管混凝土柱-平腹板H形钢梁节点(J-WB-O)的破坏出现在环板和钢梁连接位置,而钢管混凝土柱-波纹腹板H形钢梁加腋节点(J-CW-AP)的破坏远离环板与钢梁连接位置,延缓了钢梁下翼缘断裂;此外,J-WB-O节点钢梁全截面提供倒塌抗力,而J-CW-AP节点在加载初期波纹腹板几乎不提供倒塌抗力,当下翼缘断裂后波纹腹板开始受力,并且随着裂缝的向上延伸波纹腹板截面依次呈现受拉状态,表现为波纹腹板波纹逐渐拉开的过程即为“折叠效应”,延缓了腹板开裂和局部屈曲。对比普通栓焊混合节点J-WB-O,波纹腹板H形钢梁栓焊混合加腋节点J-CW-AP的极限承载力与延性分别提高了67.2%和62.3%。基于抗力机制分析,给出了钢管混凝土柱-波纹腹板H形钢梁栓焊混合加腋节点抗倒塌承载力简化计算公式。Abstract: Establishes a numerical model using ABAQUS/Implicit for analyzing the progressive collapse of concrete-filled steel tubular (CFST) column to flat web H-shaped steel beam joint. In the joint configuration, a corrugated web steel beam and a welded haunch were employed to improve the anti-collapse capacity. The failure mode and failure mechanism of the joints under vertical loading and the folding effect of the corrugated web are analyzed. The results show that the failure of CFST column to flat web beam joint (J-WB-O) started at the connection between the ring plate and the beam, while the initial failure of the CFST column-corrugated web beam haunch joint (J-CW-AP) appeared at the end of the welded haunch, which delayed the fracture of the lower flange of the beam. Moreover, for the specimen J-WB-O, the entire beam section contributed to anti-collapse capacity. For the specimen J-CW-AP, the corrugated web seldom contributed to anti-collapse capacity in the initial loading stage. After the fracture of the bottom flange of the specimen J-CW-AP, the corrugated web began to contribute to anti-collapse capacity. As the cracks propagated upwards, the sections of the corrugated web were under tension gradually. The fracture and local buckling of the web were delayed due to the folding effect of the corrugated web. Compared with the specimen J-WB-O, the bearing capacity and ductility of the specimen J-CW-AP increased by 67.2% and 62.3%, respectively. Furthermore, a simplified calculation method of anti-collapse capacity is proposed based on the analysis of resistance mechanism.
-
表 1 两类节点几何信息
Table 1. Geometric information of two joints
节点类型 钢梁尺寸
hb×bb×te×tf/mm钢管尺寸
B×t/mm水平投影长度
L/mm腋角
θ/(°)腋板厚度
t/mmJ-WB-O H300×150×6×8 □250×4 ? ? ? J-CW-AP H300×150×3×8 □250×4 346 30 10 注:B为钢管柱截面边长;t为钢管壁厚度;hb为钢梁高度;bb为钢梁翼缘宽度;te为腹板厚度;tf为翼缘厚度。 -
[1] GSA 2016, Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects [S]. Washington, D. C. : The U. S. General Services Administration, 2016. [2] DoD 2016, Design of building to resist progressive collapse: UFC 4-023-03 [S]. Washington, DC: Department of Defense, 2016. [3] T/CECS 392?2021, 建筑结构抗倒塌设计标准[S]. 北京: 中国计划出版社, 2021.T/CECS 392?2021, Standard for anti-collapse design of building structures [S]. Beijing: China Planning Press, 2021. (in Chinese) [4] ALSHAIKH I M H, BAKAR B H A, ALWESABI E A, et al. Finite element analysis and experimental validation of progressive collapse of reinforced rubberized concrete frame [J]. Structures, 2021, 33: 2361 ? 2373. doi: 10.1016/j.istruc.2021.06.008 [5] 陈泽帆, 林楷奇, 陆新征, 等. RC框架梁柱子结构抗连续倒塌性能不确定性分析[J]. kb88凯时集团官网, 2021, 38(6): 72 ? 80. doi: 10.6052/j.issn.1000-4750.2020.07.0464CHEN Zefan, LIN Kaiqi, LU Xinzheng, et al. Uncertainty analysis on progressive collapse resistance of RC beam-column substructures [J]. Engineering Mechanics, 2021, 38(6): 72 ? 80. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0464 [6] 周云, 陈太平, 胡翔, 等. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. kb88凯时集团官网, 2019, 36(1): 216 ? 226. doi: 10.6052/j.issn.1000-4750.2017.11.0887ZHOU Yun, CHEN Taiping, HU Xiang, et al. Progressive collapse resistance of RC frame structures considering surrounding structural constraints [J]. Engineering Mechanics, 2019, 36(1): 216 ? 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0887 [7] 余洋, 李治, 肖龙山, 等. 边柱失效后预应力拼接连接装配式结构抗连续倒塌机理研究[J]. kb88凯时集团官网, 2021, 38(4): 159 ? 168. doi: 10.6052/j.issn.1000-4750.2020.06.0366YU Yang, LI Zhi, XIAO Longshan, et al. Load resisting mechanism of precast structure under exterior column failure [J]. Engineering Mechanics, 2021, 38(4): 159 ? 168. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0366 [8] QIN X, WANG W, CHEN Y Y. A special reinforcing technique to improve resistance of beam-to-tubular column connections for progressive collapse prevention [J]. Engineering Structures, 2016, 117: 26 ? 39. doi: 10.1016/j.engstruct.2016.03.012 [9] 孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. kb88凯时集团官网, 2018, 35(6): 88 ? 96. doi: 10.6052/j.issn.1000-4750.2017.02.0120MENG Bao, ZHONG Weihui, HAO Jiping. Experimental study on anti-collapse performance for beam-to-column assemblies of steel frame based on joint stiffness [J]. Engineering Mechanics, 2018, 35(6): 88 ? 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.02.0120 [10] WANG W D, ZHENG L, LI H W. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario [J]. Engineering Structures, 2020, 219: 110956. doi: 10.1016/j.engstruct.2020.110956 [11] BREGOLI G, VASDRAVELLIS G, KARAVASILIS T L, et al. Static and dynamic tests on steel joints equipped with novel structural details for anti-collapse mitigation [J]. Engineering Structures, 2021, 232: 111829. doi: 10.1016/j.engstruct.2020.111829 [12] 王景玄, 杨永, 周侃, 等. 角柱失效下钢管混凝土柱-组合梁框架抗连续倒塌能力研究[J]. kb88凯时集团官网, 2022, 39(5): 105 ? 118. doi: 10.6052/j.issn.1000-4750.2021.02.0147WANG Jingxuan, YANG Yong, ZHOU Kan, et al. Research on progressive collapse resistance capacity of composite frame with CFST columns under corner column removal scenario [J]. Engineering Mechanics, 2022, 39(5): 105 ? 118. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0147 [13] WANG J X, SHEN Y J, GAO S, et al. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal [J]. Engineering Structures, 2022, 266: 114635. doi: 10.1016/j.engstruct.2022.114635 [14] FENG P, QIANG H L, QIN W H, et al. A novel kinked rebar con figuration for simultaneously improving the seismic performance and progressive collapse resistance of RC frame Structures [J]. Engineering Structures, 2017, 147: 752 ? 767. doi: 10.1016/j.engstruct.2017.06.042 [15] YANG X J, LIN F, GU X L. Experimental study on a novel method to improve progressive collapse resistance of RC frames using locally debonded rebars [J]. Journal of Building Engineering, 2021, 41: 102428. doi: 10.1016/j.jobe.2021.102428 [16] LIN K Q, LU X Z, LI Y, et al. A novel structural detailing for the improvement of seismic and progressive collapse performances of RC frames [J]. Earthquake Engineering & Structural Dynamics, 2019(3): 1 ? 20. [17] LU X Z, ZHANG L, LIN K Q, et al. Improvement to composite frame systems for seismic and progressive collapse resistance [J]. Engineering Structures, 2019, 186: 227 ? 242. doi: 10.1016/j.engstruct.2019.02.006 [18] TIAN Y, LIN K Q, ZHANG L, et al. Novel seismic-progressive collapse resilient super-tall building system [J]. Journal of Building Engineering, 2021, 41: 102790. doi: 10.1016/j.jobe.2021.102790 [19] QIAO H Y, XIE X Y, CHEN Y. Improvement of progressive collapse resistance for a steel frame system with beam-web opening [J]. Engineering Structures, 2022, 256: 113995. doi: 10.1016/j.engstruct.2022.113995 [20] MENG B ZHONG W H, HAO J P, et al. Improved steel frame performance against progressive collapse with infill panels [J]. Journal of Constructional Steel Research, 2019, 158: 201 ? 212. doi: 10.1016/j.jcsr.2019.03.022 [21] WANG J X, YANG Y, XIAN W, et al. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted–welded hybrid connection [J]. International Journal of Steel Structures, 2020, 20(5): 1618 ? 1635. doi: 10.1007/s13296-020-00397-3 [22] ZHENG L, WANG W D, XIAN W. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam [J]. Engineering Structures, 2022, 256(2022): 114061. [23] 张哲, 李国强, 孙飞飞. 波纹腹板H型钢梁受弯稳定性研究[J]. kb88凯时集团官网, 2011, 28(8): 72 ? 82.ZHANG Zhe, LI Guoqiang, SUN Feifei. Research on flexural stability of the h-beams with corrugated webs [J]. Engineering Mechanics, 2011, 28(8): 72 ? 82. (in Chinese) [24] ELKAWAS A A, HASSANEIN M F, HADIDY A M E, et al. Behaviour of corrugated web girders subjected to lateral-torsional buckling: Experimental tests and numerical modelling [J]. Structures, 2021, 33: 152 ? 168. doi: 10.1016/j.istruc.2021.04.057 [25] 谢梦洁, 邹昀, 王城泉, 等. 新型预应力外包波纹钢-混凝土组合梁受弯性能试验研究[J]. kb88凯时集团官网, 2021, 38(7): 64 ? 74. doi: 10.6052/j.issn.1000-4750.2020.07.0461XIE Mengjie, ZOU Yun, WANG Chengquan, et al. Experiment study on bending behavior of novel prestressed steel-encased concrete composite beam with corrugated steel webs [J]. Engineering Mechanics, 2021, 38(7): 64 ? 74. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0461 [26] 王景玄, 杨永, 孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报, 2022, 55(8): 1 ? 13.WANG Jingxuan, YANG Yong, SUN Yanhao. Research on progressive collapse resistance of composite frame with concrete filled steel tubular columns and full-height infill walls [J]. China Civil Engineering Journal, 2022, 55(8): 1 ? 13. (in Chinese) [27] SHI G, ZHAO H T, CHEN X S, et al. Experimental study of cyclic behavior of retrofitted beam-to-column joints with welded haunches [J]. Journal of Constructional Steel Research, 2020, 171: 106146. doi: 10.1016/j.jcsr.2020.106146 [28] CECS 291: 2011, 波纹腹板钢结构技术规程 [S]. 北京: 中国计划出版社, 2011.CECS 291: 2011, Technical specification for steel structures with corrugated webs [S]. Beijing: China Planning Press, 2011. (in Chinese) [29] AISC, Steel Design Guide Series 12: Modification of Existing Welded Steel Moment Frame Connections for Seismic Resistance [S]. Chicago: AISC, 2003. [30] 韩林海. 钢管混凝土结构-理论与实践[M]. 第三版. 北京: 科学出版社, 2016: 73 ? 74.HAN Linhai. Concrete filled steel tubular structures-theory and practice [M]. 3rd ed. Beijing: Science Press, 2016: 73 ? 74. (in Chinese) [31] ESMAEILY A, XIAO Y. Behavior of reinforced concrete columns under variable axial loads: analysis [J]. ACI Structure Journal, 2005, 102(5): 736 ? 744. [32] GRUBEN G, FAGERHOLT E, HOPPERATAD O S, et al. Fracture characteristics of a cold-rolled dual-phase steel [J]. European Journal of Mechanics-A/Solids, 2011, 30(3): 204 ? 218. [33] YU H L, JEONG D Y. Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens [J]. Theoretical and Applied Fracture Mechanics, 2010, 54(1): 54 ? 62. doi: 10.1016/j.tafmec.2010.06.015 [34] 周天华, 李文超, 管宇, 等. 基于应力三轴度的钢框架循环加载损伤分析[J]. kb88凯时集团官网, 2014, 31(7): 146 ? 155. doi: 10.6052/j.issn.1000-4750.2013.01.0090ZHOU Tianhua, LI Wenchao, GUAN Yu, et al. Damage analysis of steel frames under cyclic load based on stress triaxiality [J]. Engineering Mechanics, 2014, 31(7): 146 ? 155. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.01.0090 -