EFFECTS OF CORROSION AND AFTERSHOCK ON STRUCTURAL DAMAGE AND FRAGILITY OF REINFORCED CONCRETE FRAME STRUCTURES
-
摘要: 为量化钢筋锈蚀与余震对钢筋混凝土结构抗震性能的影响,选取两栋按我国现行规范设计的中国东南沿海地区钢筋混凝土框架结构为研究对象,考虑未锈蚀和由低到高三种不同锈蚀率(5%、10%和15%)的四种工况,采用真实主余震序列作为输入,选取Park-Ang损伤指数作为结构损伤指标,开展了主余震序列作用下的未锈蚀与锈蚀钢筋混凝土框架结构的地震损伤评估与易损性分析。计算结果表明:锈蚀率的提高加剧了主余震序列作用下的结构累积损伤,其增长率最大可超过50%。由钢筋锈蚀单一因素引起的结构损伤在主余震累积损伤中的占比最高可超过30%。此外,钢筋锈蚀因素会导致结构的主余震易损性曲线发生显著提升。当锈蚀率较大时,钢筋锈蚀对结构易损性的影响与余震对结构易损性的影响相接近。钢筋锈蚀和余震两个因素的耦合作用会使结构的易损性水平发生更为显著的提升。因此,十分有必要在既有钢筋混凝土结构抗主余震性能评估中考虑钢筋锈蚀因素的影响。Abstract: To evaluate the effects of corrosion and aftershock on structural seismic resistance. Two seismic designed reinforced-concrete frame buildings located in a coastal city were selected for study. Four corrosion conditions were considered, i.e., uncorroded and corrosion ratios of 5%, 10% and 15%. A set of 662 mainshock-aftershock sequences were taken as the inputs for time history analysis. Then the damage analysis and fragility assessment were conducted to the corroded and uncorroded buildings subjected to mainshock-aftershock sequences. Results show that the increment of corrosion ratio exacerbates structural cumulative damage under mainshock-aftershock sequences. The increment ratio of the structural cumulative damage is even over 30%. The corrosion effect can lead to an increase in fragility curves, and the influence of the corrosion effect on mainshock fragility curves under heavy corrosion condition is close to that under aftershocks. The coupling effect of corrosion and aftershock can cause a significant elevating in mainshock fragility curve. Therefore, it is necessary to consider the effect of corrosion in seismic performance assessment subjected to mainshock-aftershock sequences.
-
表 1 结构的主要设计参数
Table 1. Basic design parameters of the case frames
设计参数 参数数值 设计参数 参数数值 设防烈度/度 7、8 基本风压/(kN·m?2) 0.75 设计地震分组 I 基本雪压/(kN·m?2) 0.50 场地特征周期/s 0.35 屋面恒载/(kN·m?2) 4.00 基本加速度/g 0.1、0.2 标准层活载/(kN·m?2) 2.00 场地类别 II 标准层恒载/(kN·m?2) 2.00 表 2 三种损伤与其因变量之间的复相关系数
Table 2. Multiple correlation coefficients of the three damage values with their corresponding input variables
结构编号 损伤工况 复相关系数R F-1 DIMS,C 0.76 DIAS,C 0.66 DIMA,C 0.80 F-2 DIMS,C 0.74 DIAS,C 0.69 DIMA,C 0.82 表 3 γM、γA和γMA的计算结果
Table 3. Results of γM, γA and γMA
各类损伤增长率γ 锈蚀率ηs/(%) 损伤占比/(%) F-1 F-2 γM 5 0.134 0.132 10 0.268 0.273 15 0.433 0.430 γA 5 0.200↑ 0.130 10 0.427↑ 0.273 15 0.616↑ 0.389 γMA 5 0.160 0.130 10 0.360 0.260 15 0.540 0.420 注:文中加粗代表同类中的数值较大项,箭头表示增长。 表 4 不同设防水平下三类损伤的占比
Table 4. Percentage of three damages under different fortification levels
锈蚀率ηs/(%) 占比系数 损伤占比/(%) F-1 F-2 5 αm 43 44 αa 47 46 αc 10 10 10 αm 38 38 αa 42 41 αc 20 21 15 αm 34 33 αa 37 36 αc 29 31 表 5 主震需求模型参数
Table 5. Parameters of mainshock demand models
结构
编号锈蚀率
ηs/(%)需求模型
参数θ0需求模型
参数θ1需求模型
参数θ2需求模型
参数θIM需求模型
参数βD|MF-1 10 ?2.08 0.44 1.34 ?2.91 0.46 15 ?1.93 0.44 1.32 ?2.92 0.47 F-2 0 ?2.58 0.42 1.20 ?2.89 0.52 5 ?2.48 0.42 1.27 ?2.79 0.50 10 ?2.30 0.43 1.35 ?2.67 0.50 15 ?2.30 0.39 1.32 ?2.80 0.48 表 6 主余震需求模型参数
Table 6. Parameters of mainshock-aftershock demand models
结构
编号锈蚀率
ηs/(%)需求模型
参数θ0需求模型
参数θ1需求模型
参数θ2需求模型
参数θIM需求模型
参数βD|MAF-1 0 ?1.27 0.36 1.15 ?2.50 0.54 5 ?1.12 0.37 1.15 ?2.49 0.56 10 ?1.02 0.38 1.14 ?2.57 0.56 15 ?0.82 0.40 1.09 ?2.64 0.57 F-2 0 ?1.48 0.47 1.05 ?2.71 0.53 5 ?1.32 0.47 1.09 ?2.61 0.60 10 ?1.22 0.46 1.15 ?2.51 0.65 15 ?1.05 0.46 1.11 ?2.56 0.66 表 7 四个极限状态对应的DI值
Table 7. DI values of four limit states (LSs)
极限状态 轻微破坏
LS1中等破坏
LS2严重破坏
LS3倒塌
LS4DI值 0.1 0.2 0.5 1.0 -
[1] 金伟良, 吕清芳, 赵羽习, 等. 混凝土结构耐久性设计方法与寿命预测研究进展[J]. 建筑结构学报, 2007, 28(1): 7 ? 13.JIN Weiliang, LYU Qingfang, ZHAO Yuxi, et al. Research progress on the durability design and life prediction of concrete structures [J]. Journal of Building Structures, 2007, 28(1): 7 ? 13. (in Chinese) [2] 彭小波, 李小军, 刘启方, 等. 汶川地震中建筑震害衰减特征及抗震性能分析[J]. 地震工程与工程振动, 2011, 31(3): 27 ? 32.PENG Xiaobo, LI Xiaojun, LIU Qifang, et al. Building damage attenuation and a seismic performance analysis in Wenchuan earthquake [J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(3): 27 ? 32. (in Chinese) [3] 吕大刚, 于晓辉. 基于地震易损性解析函数的概率地震风险理论研究[J]. 建筑结构学报, 2013, 34(10): 41 ? 48.LYU Dagang, YU Xiaohui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility [J]. Journal of Building Structures, 2013, 34(10): 41 ? 48. (in Chinese) [4] 于晓辉, 吕大刚. 基于地震易损性解析函数的概率地震风险应用研究[J]. 建筑结构学报, 2013, 34(10): 49 ? 56.YU Xiaohui, LYU Dagang. Application study of probabilistic seismic risk assessment based on analytical functions of seismic fragility [J]. Journal of Building Structures, 2013, 34(10): 49 ? 56. (in Chinese) [5] 刘春阳, 孙鹏, 赵兴权. 消能限位型钢支撑抗震性能试验研究及结构地震易损性分析[J]. kb88凯时集团官网, 2022, 39(5): 210 ? 223. doi: 10.6052/j.issn.1000-4750.2021.03.0196LIU Chunyang, SUN Peng, ZHAO Xingquan. Experimental study on seismic performance of energy dissipation and position limitation steel brace and structure seismic vulnerability analysis [J]. Engineering Mechanics, 2022, 39(5): 210 ? 223. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0196 [6] 刘流, 李英民, 姬淑艳. 掉层RC框架结构基于典型失效模式的失效概率评估[J]. kb88凯时集团官网, 2020, 37(5): 74 ? 81. doi: 10.6052/j.issn.1000-4750.2019.05.0244LIU Liu, LI Yingmin, JI Shuyan. Failure probability evaluation of RC frame supported by foundations with different elevations based on typical failure modes [J]. Engineering Mechanics, 2020, 37(5): 74 ? 81. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.0244 [7] 秦卿, 邱继生, 张程华, 等. 近海大气环境下多龄期典型钢筋混凝土剪力墙结构地震易损性研究[J]. 工业建筑, 2020, 50(12): 32 ? 41.QIN Qing, QIU Jisheng, ZHANG Chenghua, et al. Research on seismic fragility of multi-aged RC shear wall structures in offshore atmospheric environment [J]. Industrial Construction, 2020, 50(12): 32 ? 41. (in Chinese) [8] 代旷宇, 于晓辉, 李雨适, 等. 锈蚀钢筋混凝土结构地震易损性分析[J]. 建筑结构学报, 2022, 43(8): 20 ? 31.DAI Kuangyu, YU Xiaohui, LI Yushi, et al. Seismic fragility analysis of reinforced concrete structures considering reinforcement corrosion [J]. Journal of Building Structures, 2022, 43(8): 20 ? 31. (in Chinese) [9] 代旷宇, 于晓辉, 吕大刚, 等. 采用光圆钢筋配筋的锈蚀RC框架结构抗震性能分析: 以新西兰结构为例[J]. 土木工程学报, 2020, 53(增刊 2): 53 ? 60.DAI Kuangyu, YU Xiaohui, LYU Dagang, et al. Seismic performance assessment of corroded RC frame structures with plain steel bars: A case study in New Zealand [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 53 ? 60. (in Chinese) [10] 郑山锁, 杨威, 秦卿, 等. 基于氯盐最不利侵蚀下锈蚀RC框架结构时变地震易损性研究[J]. 振动与冲击, 2015, 34(7): 38 ? 45.ZHENG Shansuo, YANG Wei, QIN Qing, et al. Study on time-dependent seismic fragility analysis of RC frame structures corroded by the most disadvantageous chloride attack [J]. Journal of Vibration and Shock, 2015, 34(7): 38 ? 45. (in Chinese) [11] YU X H, DAI K Y, LI Y S. Variability in corrosion damage models and its effect on seismic collapse fragility of aging reinforced concrete frames [J]. Construction and Building Materials, 2021, 295: 123654. doi: 10.1016/j.conbuildmat.2021.123654 [12] YALCINER H, SENSOY S, EREN O. Seismic performance assessment of a corroded 50-year-old reinforced concrete building [J]. Journal of Structural Engineering, 2015, 141(12): 05015001. doi: 10.1061/(ASCE)ST.1943-541X.0001263 [13] ZHOU Z, XU H, GARDONI P, et al. Probabilistic demand models and fragilities for reinforced concrete frame structures subject to mainshock-aftershock sequences [J]. Engineering Structures, 2021, 245: 112904. doi: 10.1016/j.engstruct.2021.112904 [14] 刘平, 王超, 张健新. 主余震作用下高强钢筋混凝土框架的易损性分析[J]. 世界地震工程, 世界地震工程, 2022, 38(1): 20 ? 27.LIU Ping, WANG Chao, ZHANG Jianxin. Fragility analysis of high strength reinforced concrete frame structures subjected to mainshock-aftershock earthquake sequences [J]. World Earthquake Engineering, 2022, 38(1): 20 ? 27. (in Chinese) [15] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. kb88凯时集团官网, 2020, 37(2): 124 ? 133. doi: 10.6052/j.issn.1000-4750.2019.01.0116HAN Jianping, LI Jun. Seismic fragility analysis of low-ductile RC frame accounting for the influence of mainshock-aftershock sequences [J]. Engineering Mechanics, 2020, 37(2): 124 ? 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0116 [16] 徐龙河, 敬祺轲, 谢行思. 主余震下自复位支撑RC框架结构性能研究[J]. kb88凯时集团官网, 2023, 40(5): 117 ? 124. doi: 10.6052/j.issn.1000-4750.2021.10.0824XU Longhe, JING Qike, XIE Xingsi. Performance study on RC frame structures with self-centering braces under main- and after-earthquakes [J]. Engineering Mechanics, 2023, 40(5): 117 ? 124. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0824 [17] 周洲, 于晓辉, 吕大刚. 主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估[J]. kb88凯时集团官网, 2018, 35(11): 134 ? 145. doi: 10.6052/j.issn.1000-4750.2017.07.0588ZHOU Zhou, YU Xiaohui, LYU Dagang. Fragility analysis and safety evaluation of reinforced concrete frame structures subjected to mainshock-aftershock earthquake sequences [J]. Engineering Mechanics, 2018, 35(11): 134 ? 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0588 [18] 周洲, 于晓辉, 吕大刚. 主余震序列作用下结构增量损伤比研究[J]. kb88凯时集团官网, 2021, 38(11): 147 ? 159. doi: 10.6052/j.issn.1000-4750.2020.11.0791ZHOU Zhou, YU Xiaohui, LYU Dagang. Study on incremental damage ratios of structures due to mainshock-aftershock earthquake sequences [J]. Engineering Mechanics, 2021, 38(11): 147 ? 159. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0791 [19] 于晓辉, 周洲, 吕大刚. 钢筋混凝土框架结构的损伤状态相关余震易损性分析[J]. 建筑结构学报, 2022, 43(4): 8 ? 16.YU Xiaohui, ZHOU Zhou, LYU Dagang. Damage-state-dependent aftershock fragility analysis for reinforced concrete frame structures [J]. Journal of Building Structures, 2022, 43(4): 8 ? 16. (in Chinese) [20] DI TRAPANI F, MALAVISI M. Seismic fragility assessment of infilled frames subject to mainshock/aftershock sequences using a double incremental dynamic analysis approach [J]. Bulletin of Earthquake Engineering, 2019, 17(1): 211 ? 235. doi: 10.1007/s10518-018-0445-2 [21] YU X H, ZHOU Z, DU W Q, et al. Development of fragility surfaces for reinforced concrete buildings under mainshock-aftershock sequences [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(15): 3981 ? 4000. [22] ABDELNABY A E. Fragility curves for RC frames subjected to Tohoku mainshock-aftershocks sequences [J]. Journal of Earthquake Engineering, 2018, 22(5): 902 ? 920. doi: 10.1080/13632469.2016.1264328 [23] YU X H, DAI K Y, LI Y S, et al. Seismic resilience assessment of corroded reinforced concrete structures designed to the Chinese codes [J]. Earthquake Engineering and Engineering Vibration, 2021, 20(2): 303 ? 316. doi: 10.1007/s11803-021-2021-z [24] 邢国华, 杨成雨, 常召群, 等. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. kb88凯时集团官网, 2019, 36(8): 87 ? 95. doi: 10.6052/j.issn.1000-4750.2018.07.0376XING Guohua, YANG Chengyu, CHANG Zhaoqun, et al. Study on modified axial-shear-flexure interaction model for corroded reinforced concrete columns [J]. Engineering Mechanics, 2019, 36(8): 87 ? 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0376 [25] 曹琛, 郑山锁, 胡卫兵, 等. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. kb88凯时集团官网, 2019, 36(4): 125 ? 134. doi: 10.6052/j.issn.1000-4750.2018.01.0085CAO Chen, ZHENG Shansuo, HU Weibing, et al. A restoring force model of corroded reinforced concrete frame beams in offshore atmospheric environment [J]. Engineering Mechanics, 2019, 36(4): 125 ? 134. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0085 [26] GHOSH J, PADGETT J E. Aging considerations in the development of time-dependent seismic fragility curves [J]. Journal of Structural Engineering, 2010, 136(12): 1497 ? 1511. doi: 10.1061/(ASCE)ST.1943-541X.0000260 [27] DU Y G, CLARK L A, CHAN A H C. Residual capacity of corroded reinforcing bars [J]. Magazine of Concrete Research, 2005, 57(3): 135 ? 147. doi: 10.1680/macr.2005.57.3.135 [28] CAIRNS J, PLIZZARI G A, DU Y G, et al. Mechanical properties of corrosion-damaged reinforcement [J]. ACI Materials Journal, 2005, 102(4): 256 ? 264. [29] CORONELLI D, GAMBAROVA P. Structural assessment of corroded reinforced concrete beams: Modeling guidelines [J]. Journal of Structural Engineering, 2004, 130(8): 1214 ? 1224. doi: 10.1061/(ASCE)0733-9445(2004)130:8(1214) [30] PITILAKIS K D, KARAPETROU S T, FOTOPOULOU S D. Consideration of aging and SSI effects on seismic vulnerability assessment of RC buildings [J]. Bulletin of Earthquake Engineering, 2014, 12(4): 1755 ? 1776. doi: 10.1007/s10518-013-9575-8 [31] JEON J S, DESROCHES R, LOWES L N, et al. Framework of aftershock fragility assessment-case studies: Older California reinforced concrete building frames [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(15): 2617 ? 2636. [32] KUNNATH S K, REINHORN A M, LOBO R F. IDARC Version 3.0: A program for the inelastic damage analysis of reinforced concrete structures [M]. Buffalo, NY: National Center for Earthquake Engineering Research, 1992. [33] SINGHAL A, KIREMIDJIAN A S. Method for probabilistic evaluation of seismic structural damage [J]. Journal of Structural Engineering, 1996, 122(12): 1459 ? 1467. doi: 10.1061/(ASCE)0733-9445(1996)122:12(1459) [34] RAMAMOORTHY S K, GARDONI P, BRACCI J M. Probabilistic demand models and fragility curves for reinforced concrete frames [J]. Journal of Structural Engineering, 2006, 132(10): 1563 ? 1572. doi: 10.1061/(ASCE)0733-9445(2006)132:10(1563) -