留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢筋锈蚀与余震对RC框架结构地震损伤与易损性的影响分析

周洲 于晓辉 吕大刚 韩淼

周洲, 于晓辉, 吕大刚, 韩淼. 钢筋锈蚀与余震对RC框架结构地震损伤与易损性的影响分析[J]. kb88凯时集团官网, 2023, 40(9): 203-213, 256. doi: 10.6052/j.issn.1000-4750.2022.09.0813
引用本文: 周洲, 于晓辉, 吕大刚, 韩淼. 钢筋锈蚀与余震对RC框架结构地震损伤与易损性的影响分析[J]. kb88凯时集团官网, 2023, 40(9): 203-213, 256. doi: 10.6052/j.issn.1000-4750.2022.09.0813
ZHOU Zhou, YU Xiao-hui, LYU Da-gang, HAN Miao. EFFECTS OF CORROSION AND AFTERSHOCK ON STRUCTURAL DAMAGE AND FRAGILITY OF REINFORCED CONCRETE FRAME STRUCTURES[J]. Engineering Mechanics, 2023, 40(9): 203-213, 256. doi: 10.6052/j.issn.1000-4750.2022.09.0813
Citation: ZHOU Zhou, YU Xiao-hui, LYU Da-gang, HAN Miao. EFFECTS OF CORROSION AND AFTERSHOCK ON STRUCTURAL DAMAGE AND FRAGILITY OF REINFORCED CONCRETE FRAME STRUCTURES[J]. Engineering Mechanics, 2023, 40(9): 203-213, 256. doi: 10.6052/j.issn.1000-4750.2022.09.0813

钢筋锈蚀与余震对RC框架结构地震损伤与易损性的影响分析

doi: 10.6052/j.issn.1000-4750.2022.09.0813
基金项目: 北京建筑大学大型多功能振动台阵实验室开放研究专项基金项目(2021MFSTL04);中国博士后科学基金面上项目(2022M710333);国家自然科学面上基金项目(52078176)
详细信息
    作者简介:

    周 洲(1991?),男,河北人,博士,主要从事主余震易损性、风险分析和韧性评估的研究(E-mail: zzhouhit@163.com)

    吕大刚(1970?),男,黑龙江人,教授,博士,博导,主要从事地震工程与结构可靠度研究(E-mail: ludagang@hit.edu.cn)

    韩 淼(1969?),男,山东人,教授,博士,博导,主要从事工程结构抗震、减隔震和防灾减灾研究(E-mail: hanmiao@bucea.edu.cn)

    通讯作者:

    于晓辉(1982?),男,辽宁人,教授,博士,博导,主要从事地震易损性与风险分析的研究(E-mail: yxhhit@126.com)

  • 中图分类号: TU375.4

EFFECTS OF CORROSION AND AFTERSHOCK ON STRUCTURAL DAMAGE AND FRAGILITY OF REINFORCED CONCRETE FRAME STRUCTURES

  • 摘要: 为量化钢筋锈蚀与余震对钢筋混凝土结构抗震性能的影响,选取两栋按我国现行规范设计的中国东南沿海地区钢筋混凝土框架结构为研究对象,考虑未锈蚀和由低到高三种不同锈蚀率(5%、10%和15%)的四种工况,采用真实主余震序列作为输入,选取Park-Ang损伤指数作为结构损伤指标,开展了主余震序列作用下的未锈蚀与锈蚀钢筋混凝土框架结构的地震损伤评估与易损性分析。计算结果表明:锈蚀率的提高加剧了主余震序列作用下的结构累积损伤,其增长率最大可超过50%。由钢筋锈蚀单一因素引起的结构损伤在主余震累积损伤中的占比最高可超过30%。此外,钢筋锈蚀因素会导致结构的主余震易损性曲线发生显著提升。当锈蚀率较大时,钢筋锈蚀对结构易损性的影响与余震对结构易损性的影响相接近。钢筋锈蚀和余震两个因素的耦合作用会使结构的易损性水平发生更为显著的提升。因此,十分有必要在既有钢筋混凝土结构抗主余震性能评估中考虑钢筋锈蚀因素的影响。
  • 图  1  结构平面、立面图 /m

    Figure  1.  Elevation and plan view of the building

    图  2  结构F-1配筋图 /mm

    Figure  2.  Size and reinforcement details of F-1 building

    图  3  结构F-2配筋图 /mm

    Figure  3.  Size and reinforcement details of F-2 building

    图  4  所挑选主、余震记录的地震参数与反应谱

    Figure  4.  Earthquake parameters and response spectra of the selected mainshock and aftershock ground motions

    图  5  主余震序列的构造

    Figure  5.  Formation of a mainshock-aftershock sequence

    图  6  结构F-1的部分主震和主余震需求模型

    Figure  6.  Demand models of the F-1 building under mainshock and mainshock-aftershock sequences

    图  7  结构F-1的易损性曲线

    Figure  7.  Fragility curves of F-1

    图  8  结构F-2的易损性曲线

    Figure  8.  Fragility curves of F-2

    图  9  主震作用下的锈蚀易损性影响系数ΔPC

    Figure  9.  Fragility influence factor of corrosion (ΔPC) under mainshock

    图  10  结构的余震易损性影响系数ΔPAS

    Figure  10.  Fragility influence factor of aftershock (ΔPAS) for uncorroded buildings

    图  11  余震与锈蚀对易损性的耦合影响系数ΔPAS,C

    Figure  11.  Fragility influence factor of corrosion and aftershock (ΔPAS,C) for different buildings

    表  1  结构的主要设计参数

    Table  1.   Basic design parameters of the case frames

    设计参数 参数数值 设计参数 参数数值
    设防烈度/度 7、8 基本风压/(kN·m?2) 0.75
    设计地震分组 I 基本雪压/(kN·m?2) 0.50
    场地特征周期/s 0.35 屋面恒载/(kN·m?2) 4.00
    基本加速度/g 0.1、0.2 标准层活载/(kN·m?2) 2.00
    场地类别 II 标准层恒载/(kN·m?2) 2.00
    下载: 导出CSV

    表  2  三种损伤与其因变量之间的复相关系数

    Table  2.   Multiple correlation coefficients of the three damage values with their corresponding input variables

    结构编号 损伤工况 复相关系数R
    F-1 DIMS,C 0.76
    DIAS,C 0.66
    DIMA,C 0.80
    F-2 DIMS,C 0.74
    DIAS,C 0.69
    DIMA,C 0.82
    下载: 导出CSV

    表  3  γM、γAγMA的计算结果

    Table  3.   Results of γM, γA and γMA

    各类损伤增长率γ 锈蚀率ηs/(%) 损伤占比/(%)
    F-1 F-2
    γM 5 0.134 0.132
    10 0.268 0.273
    15 0.433 0.430
    γA 5 0.200↑ 0.130
    10 0.427↑ 0.273
    15 0.616↑ 0.389
    γMA 5 0.160 0.130
    10 0.360 0.260
    15 0.540 0.420
    注:文中加粗代表同类中的数值较大项,箭头表示增长。
    下载: 导出CSV

    表  4  不同设防水平下三类损伤的占比

    Table  4.   Percentage of three damages under different fortification levels

    锈蚀率ηs/(%) 占比系数 损伤占比/(%)
    F-1 F-2
    5 αm 43 44
    αa 47 46
    αc 10 10
    10 αm 38 38
    αa 42 41
    αc 20 21
    15 αm 34 33
    αa 37 36
    αc 29 31
    下载: 导出CSV

    表  5  主震需求模型参数

    Table  5.   Parameters of mainshock demand models

    结构
    编号
    锈蚀率
    ηs/(%)
    需求模型
    参数θ0
    需求模型
    参数θ1
    需求模型
    参数θ2
    需求模型
    参数θIM
    需求模型
    参数βD|M
    F-1 10 ?2.08 0.44 1.34 ?2.91 0.46
    15 ?1.93 0.44 1.32 ?2.92 0.47
    F-2 0 ?2.58 0.42 1.20 ?2.89 0.52
    5 ?2.48 0.42 1.27 ?2.79 0.50
    10 ?2.30 0.43 1.35 ?2.67 0.50
    15 ?2.30 0.39 1.32 ?2.80 0.48
    下载: 导出CSV

    表  6  主余震需求模型参数

    Table  6.   Parameters of mainshock-aftershock demand models

    结构
    编号
    锈蚀率
    ηs/(%)
    需求模型
    参数θ0
    需求模型
    参数θ1
    需求模型
    参数θ2
    需求模型
    参数θIM
    需求模型
    参数βD|MA
    F-1 0 ?1.27 0.36 1.15 ?2.50 0.54
    5 ?1.12 0.37 1.15 ?2.49 0.56
    10 ?1.02 0.38 1.14 ?2.57 0.56
    15 ?0.82 0.40 1.09 ?2.64 0.57
    F-2 0 ?1.48 0.47 1.05 ?2.71 0.53
    5 ?1.32 0.47 1.09 ?2.61 0.60
    10 ?1.22 0.46 1.15 ?2.51 0.65
    15 ?1.05 0.46 1.11 ?2.56 0.66
    下载: 导出CSV

    表  7  四个极限状态对应的DI

    Table  7.   DI values of four limit states (LSs)

    极限状态 轻微破坏
    LS1
    中等破坏
    LS2
    严重破坏
    LS3
    倒塌
    LS4
    DI 0.1 0.2 0.5 1.0
    下载: 导出CSV
  • [1] 金伟良, 吕清芳, 赵羽习, 等. 混凝土结构耐久性设计方法与寿命预测研究进展[J]. 建筑结构学报, 2007, 28(1): 7 ? 13.

    JIN Weiliang, LYU Qingfang, ZHAO Yuxi, et al. Research progress on the durability design and life prediction of concrete structures [J]. Journal of Building Structures, 2007, 28(1): 7 ? 13. (in Chinese)
    [2] 彭小波, 李小军, 刘启方, 等. 汶川地震中建筑震害衰减特征及抗震性能分析[J]. 地震工程与工程振动, 2011, 31(3): 27 ? 32.

    PENG Xiaobo, LI Xiaojun, LIU Qifang, et al. Building damage attenuation and a seismic performance analysis in Wenchuan earthquake [J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(3): 27 ? 32. (in Chinese)
    [3] 吕大刚, 于晓辉. 基于地震易损性解析函数的概率地震风险理论研究[J]. 建筑结构学报, 2013, 34(10): 41 ? 48.

    LYU Dagang, YU Xiaohui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility [J]. Journal of Building Structures, 2013, 34(10): 41 ? 48. (in Chinese)
    [4] 于晓辉, 吕大刚. 基于地震易损性解析函数的概率地震风险应用研究[J]. 建筑结构学报, 2013, 34(10): 49 ? 56.

    YU Xiaohui, LYU Dagang. Application study of probabilistic seismic risk assessment based on analytical functions of seismic fragility [J]. Journal of Building Structures, 2013, 34(10): 49 ? 56. (in Chinese)
    [5] 刘春阳, 孙鹏, 赵兴权. 消能限位型钢支撑抗震性能试验研究及结构地震易损性分析[J]. kb88凯时集团官网, 2022, 39(5): 210 ? 223. doi: 10.6052/j.issn.1000-4750.2021.03.0196

    LIU Chunyang, SUN Peng, ZHAO Xingquan. Experimental study on seismic performance of energy dissipation and position limitation steel brace and structure seismic vulnerability analysis [J]. Engineering Mechanics, 2022, 39(5): 210 ? 223. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0196
    [6] 刘流, 李英民, 姬淑艳. 掉层RC框架结构基于典型失效模式的失效概率评估[J]. kb88凯时集团官网, 2020, 37(5): 74 ? 81. doi: 10.6052/j.issn.1000-4750.2019.05.0244

    LIU Liu, LI Yingmin, JI Shuyan. Failure probability evaluation of RC frame supported by foundations with different elevations based on typical failure modes [J]. Engineering Mechanics, 2020, 37(5): 74 ? 81. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.0244
    [7] 秦卿, 邱继生, 张程华, 等. 近海大气环境下多龄期典型钢筋混凝土剪力墙结构地震易损性研究[J]. 工业建筑, 2020, 50(12): 32 ? 41.

    QIN Qing, QIU Jisheng, ZHANG Chenghua, et al. Research on seismic fragility of multi-aged RC shear wall structures in offshore atmospheric environment [J]. Industrial Construction, 2020, 50(12): 32 ? 41. (in Chinese)
    [8] 代旷宇, 于晓辉, 李雨适, 等. 锈蚀钢筋混凝土结构地震易损性分析[J]. 建筑结构学报, 2022, 43(8): 20 ? 31.

    DAI Kuangyu, YU Xiaohui, LI Yushi, et al. Seismic fragility analysis of reinforced concrete structures considering reinforcement corrosion [J]. Journal of Building Structures, 2022, 43(8): 20 ? 31. (in Chinese)
    [9] 代旷宇, 于晓辉, 吕大刚, 等. 采用光圆钢筋配筋的锈蚀RC框架结构抗震性能分析: 以新西兰结构为例[J]. 土木工程学报, 2020, 53(增刊 2): 53 ? 60.

    DAI Kuangyu, YU Xiaohui, LYU Dagang, et al. Seismic performance assessment of corroded RC frame structures with plain steel bars: A case study in New Zealand [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 53 ? 60. (in Chinese)
    [10] 郑山锁, 杨威, 秦卿, 等. 基于氯盐最不利侵蚀下锈蚀RC框架结构时变地震易损性研究[J]. 振动与冲击, 2015, 34(7): 38 ? 45.

    ZHENG Shansuo, YANG Wei, QIN Qing, et al. Study on time-dependent seismic fragility analysis of RC frame structures corroded by the most disadvantageous chloride attack [J]. Journal of Vibration and Shock, 2015, 34(7): 38 ? 45. (in Chinese)
    [11] YU X H, DAI K Y, LI Y S. Variability in corrosion damage models and its effect on seismic collapse fragility of aging reinforced concrete frames [J]. Construction and Building Materials, 2021, 295: 123654. doi: 10.1016/j.conbuildmat.2021.123654
    [12] YALCINER H, SENSOY S, EREN O. Seismic performance assessment of a corroded 50-year-old reinforced concrete building [J]. Journal of Structural Engineering, 2015, 141(12): 05015001. doi: 10.1061/(ASCE)ST.1943-541X.0001263
    [13] ZHOU Z, XU H, GARDONI P, et al. Probabilistic demand models and fragilities for reinforced concrete frame structures subject to mainshock-aftershock sequences [J]. Engineering Structures, 2021, 245: 112904. doi: 10.1016/j.engstruct.2021.112904
    [14] 刘平, 王超, 张健新. 主余震作用下高强钢筋混凝土框架的易损性分析[J]. 世界地震工程, 世界地震工程, 2022, 38(1): 20 ? 27.

    LIU Ping, WANG Chao, ZHANG Jianxin. Fragility analysis of high strength reinforced concrete frame structures subjected to mainshock-aftershock earthquake sequences [J]. World Earthquake Engineering, 2022, 38(1): 20 ? 27. (in Chinese)
    [15] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. kb88凯时集团官网, 2020, 37(2): 124 ? 133. doi: 10.6052/j.issn.1000-4750.2019.01.0116

    HAN Jianping, LI Jun. Seismic fragility analysis of low-ductile RC frame accounting for the influence of mainshock-aftershock sequences [J]. Engineering Mechanics, 2020, 37(2): 124 ? 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0116
    [16] 徐龙河, 敬祺轲, 谢行思. 主余震下自复位支撑RC框架结构性能研究[J]. kb88凯时集团官网, 2023, 40(5): 117 ? 124. doi: 10.6052/j.issn.1000-4750.2021.10.0824

    XU Longhe, JING Qike, XIE Xingsi. Performance study on RC frame structures with self-centering braces under main- and after-earthquakes [J]. Engineering Mechanics, 2023, 40(5): 117 ? 124. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0824
    [17] 周洲, 于晓辉, 吕大刚. 主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估[J]. kb88凯时集团官网, 2018, 35(11): 134 ? 145. doi: 10.6052/j.issn.1000-4750.2017.07.0588

    ZHOU Zhou, YU Xiaohui, LYU Dagang. Fragility analysis and safety evaluation of reinforced concrete frame structures subjected to mainshock-aftershock earthquake sequences [J]. Engineering Mechanics, 2018, 35(11): 134 ? 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0588
    [18] 周洲, 于晓辉, 吕大刚. 主余震序列作用下结构增量损伤比研究[J]. kb88凯时集团官网, 2021, 38(11): 147 ? 159. doi: 10.6052/j.issn.1000-4750.2020.11.0791

    ZHOU Zhou, YU Xiaohui, LYU Dagang. Study on incremental damage ratios of structures due to mainshock-aftershock earthquake sequences [J]. Engineering Mechanics, 2021, 38(11): 147 ? 159. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0791
    [19] 于晓辉, 周洲, 吕大刚. 钢筋混凝土框架结构的损伤状态相关余震易损性分析[J]. 建筑结构学报, 2022, 43(4): 8 ? 16.

    YU Xiaohui, ZHOU Zhou, LYU Dagang. Damage-state-dependent aftershock fragility analysis for reinforced concrete frame structures [J]. Journal of Building Structures, 2022, 43(4): 8 ? 16. (in Chinese)
    [20] DI TRAPANI F, MALAVISI M. Seismic fragility assessment of infilled frames subject to mainshock/aftershock sequences using a double incremental dynamic analysis approach [J]. Bulletin of Earthquake Engineering, 2019, 17(1): 211 ? 235. doi: 10.1007/s10518-018-0445-2
    [21] YU X H, ZHOU Z, DU W Q, et al. Development of fragility surfaces for reinforced concrete buildings under mainshock-aftershock sequences [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(15): 3981 ? 4000.
    [22] ABDELNABY A E. Fragility curves for RC frames subjected to Tohoku mainshock-aftershocks sequences [J]. Journal of Earthquake Engineering, 2018, 22(5): 902 ? 920. doi: 10.1080/13632469.2016.1264328
    [23] YU X H, DAI K Y, LI Y S, et al. Seismic resilience assessment of corroded reinforced concrete structures designed to the Chinese codes [J]. Earthquake Engineering and Engineering Vibration, 2021, 20(2): 303 ? 316. doi: 10.1007/s11803-021-2021-z
    [24] 邢国华, 杨成雨, 常召群, 等. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. kb88凯时集团官网, 2019, 36(8): 87 ? 95. doi: 10.6052/j.issn.1000-4750.2018.07.0376

    XING Guohua, YANG Chengyu, CHANG Zhaoqun, et al. Study on modified axial-shear-flexure interaction model for corroded reinforced concrete columns [J]. Engineering Mechanics, 2019, 36(8): 87 ? 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0376
    [25] 曹琛, 郑山锁, 胡卫兵, 等. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. kb88凯时集团官网, 2019, 36(4): 125 ? 134. doi: 10.6052/j.issn.1000-4750.2018.01.0085

    CAO Chen, ZHENG Shansuo, HU Weibing, et al. A restoring force model of corroded reinforced concrete frame beams in offshore atmospheric environment [J]. Engineering Mechanics, 2019, 36(4): 125 ? 134. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0085
    [26] GHOSH J, PADGETT J E. Aging considerations in the development of time-dependent seismic fragility curves [J]. Journal of Structural Engineering, 2010, 136(12): 1497 ? 1511. doi: 10.1061/(ASCE)ST.1943-541X.0000260
    [27] DU Y G, CLARK L A, CHAN A H C. Residual capacity of corroded reinforcing bars [J]. Magazine of Concrete Research, 2005, 57(3): 135 ? 147. doi: 10.1680/macr.2005.57.3.135
    [28] CAIRNS J, PLIZZARI G A, DU Y G, et al. Mechanical properties of corrosion-damaged reinforcement [J]. ACI Materials Journal, 2005, 102(4): 256 ? 264.
    [29] CORONELLI D, GAMBAROVA P. Structural assessment of corroded reinforced concrete beams: Modeling guidelines [J]. Journal of Structural Engineering, 2004, 130(8): 1214 ? 1224. doi: 10.1061/(ASCE)0733-9445(2004)130:8(1214)
    [30] PITILAKIS K D, KARAPETROU S T, FOTOPOULOU S D. Consideration of aging and SSI effects on seismic vulnerability assessment of RC buildings [J]. Bulletin of Earthquake Engineering, 2014, 12(4): 1755 ? 1776. doi: 10.1007/s10518-013-9575-8
    [31] JEON J S, DESROCHES R, LOWES L N, et al. Framework of aftershock fragility assessment-case studies: Older California reinforced concrete building frames [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(15): 2617 ? 2636.
    [32] KUNNATH S K, REINHORN A M, LOBO R F. IDARC Version 3.0: A program for the inelastic damage analysis of reinforced concrete structures [M]. Buffalo, NY: National Center for Earthquake Engineering Research, 1992.
    [33] SINGHAL A, KIREMIDJIAN A S. Method for probabilistic evaluation of seismic structural damage [J]. Journal of Structural Engineering, 1996, 122(12): 1459 ? 1467. doi: 10.1061/(ASCE)0733-9445(1996)122:12(1459)
    [34] RAMAMOORTHY S K, GARDONI P, BRACCI J M. Probabilistic demand models and fragility curves for reinforced concrete frames [J]. Journal of Structural Engineering, 2006, 132(10): 1563 ? 1572. doi: 10.1061/(ASCE)0733-9445(2006)132:10(1563)
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  23
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2023-01-07
  • 网络出版日期:  2023-07-15
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回
    sitemap网站地图